
!XDP: Frictionless XDP Deployments in Userspace
Yusheng Zheng∗

yunwei356@gmail.com
UC Santa Cruz

Santa Cruz, CA, USA

Panayiotis Gavriil∗
pan.gav2001@gmail.com
The D. E. Shaw Group
New York, NY, USA

Marios Kogias
m.kogias@imperial.ac.uk
Imperial College London

London, UK

Abstract
Modern network function (NF) deployments face a fundamental
trade-o!: kernel-based extended Berkeley Packet Filter (eBPF) NFs
provide safety, portability, and an extensive tooling ecosystem, but
are limited in performance, while kernel-bypass frameworks deliver
high throughput but lack integrated veri"cation and ease of deploy-
ment. We present !XDP, a new runtime that uni"es these worlds
by running unmodi"ed, veri"ed XDP programs in userspace. !XDP
ensures compatibility and preserves the veri"cation-driven safety,
portability, and familiar work#ows of eBPF while moving execution
into the userspace, enabling more aggressive optimizations and #ex-
ibility. Without recompiling eBPF code, !XDP achieves throughput
gains of up to 3.3× over in-kernel execution and improves Meta’s
Katran load balancer performance by 40%, all while retaining the
trusted eBPF development model and deployment simplicity.

CCS Concepts
• Networks → Programmable networks; • Software and its
engineering → System administration.

Keywords
eBPF, XDP, DPDK, kernel bypass, network functions

1 Introduction
Network functions (NFs) are special-purpose programs in charge
of packet processing performing tasks such as load balancing, "re-
walling, and NAT. Software NFs are widely deployed for their #exi-
bility, composability, ease of use and performance. Depending on
the NF complexity, current CPUs are able to process millions of
packets per second on a single core. As a result, software NFs are
the cornerstone of modern cloud and telco deployments.

Userspace packet processing frameworks, such as DPDK [8] and
VPP [10], substantially improve the performance of software NFs.
By depending on poll-mode network drivers, such frameworks
eliminate the cost of interrupt processing. Also, userspace execu-
tion enables them to apply aggressive compiler optimizations such
as vector instructions (e.g., SIMD) that are very e$cient at batch
processing of packets. However, developing and deploying such
∗Yusheng Zheng and Panayiotis Gavriil were previously at Imperial College London
and any work related to this paper was done solely in a$liation with Imperial College
London.

This work is licensed under Creative Commons Attribution International 4.0.
eBPF ’25, September 8–11, 2025, Coimbra, Portugal
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-2084-0/25/09
https://doi.org/10.1145/3748355.3748360

userspace processing pipelines can be quite challenging. From the
developer’s perspective, userspace packet processing requires im-
plementing the logic to handle any packet that can arrive at the NIC,
thus increasing the development and maintenance e!ort. This usu-
ally involves writing low-level code in languages such as C, which
can be error-prone, thus jeopardizing the reliability of the pipeline.
Also, given the lack of standard interfaces, software NFs follow
an ad-hoc separation between the control and data planes which
makes code porting and code reuse across projects cumbersome.
From the deployment perspective, userspace packet processing re-
quires dedicated hardware resources, such as an entire NIC or a
virtual function [16], which are expensive to provision and might
vary across hardware vendors, thus making hardware sharing and
multiplexing hard or impossible.

The extended Berkeley Packet Filter (eBPF) [13] is emerging as
a powerful technology for Linux that enables kernel extensibility
by hooking eBPF programs at various points inside the kernel that
are guaranteed not to compromise the kernel through an in-kernel
veri"cation process. By running programs at the lowest level of the
networking stack, via the eXpress Data Path (XDP [24]) hook, eBPF
provides an excellent platform for developing and deploying NFs.
The in-kernel veri"er ensures memory, type, and resource safety;
while being part of the kernel allows eBPF programs to reuse ex-
isting packet processing logic for the packets outside the scope
of an NF. Also, being an inherent part of the kernel, eBPF makes
deployment so much simpler. Large companies acknowledged the
bene"ts coming from eBPF early on and are contributing to a large
ecosystem of tools such as Cilium [5], Meta’s Katran [9], and mar-
ketplaces (e.g., l3af [17]), thus further improving the development
experience. Yet, these bene"ts come with performance limitations
due to the kernel-based execution. Running inside the kernel im-
plies interrupt-based packet processing and eliminates certain CPU
instructions (e.g., SIMD) that o!er signi"cant performance bene"ts
for packet processing. The in-kernel veri"er prevents aggressive
optimizations that could make veri"cation harder or intractable.

So, there is a trade-o! in deploying software NFs, which re-
quire simplicity, performance, and reliability [3] at scale: userspace
solutions deliver raw performance at the expense of robustness,
easy development, maintenance, and manageability, while in-kernel
eBPF provides safety and ecosystem integration, but limits certain
CPU features and compiler optimizations, harming performance.

This paper introduces !XDP1, , a new runtime that uniquely
bridges these two worlds by transparently moving veri"ed eBPF
NFs into userspace without recompiling. !XDP re-imagines the
execution of NFs by blending the ease of deployment, veri"er-
driven safety, and ecosystem advantages of in-kernel eBPF with the
#exibility and performance optimizations historically con"ned to

1!XDP is open-sourced in https://github.com/userspace-xdp

8

https://orcid.org/0009-0004-3193-4356
https://orcid.org/0009-0006-2660-9115
https://orcid.org/0009-0006-7034-5284
https://doi.org/10.1145/3748355.3748360
https://github.com/userspace-xdp%20
https://creativecommons.org/licenses/by/4.0/

eBPF ’25, September 8–11, 2025, Coimbra, Portugal Yusheng Zheng, Panayiotis Gavriil, and Marios Kogias

userspace. Even though running NFs in userspace prevents crash-
ing the kernel, eBPF veri"cation ensures that these NFs remain safe
and reliable. Past work in verifying NFs [21, 41] also highlights the
importance of such safeguards. !XDP embraces eBPF as the foun-
dational programming model, directly accepting unmodi"ed eBPF
NF binaries, originally designed for kernel execution, and moving
them into userspace. !XDP also introduces several compilation
optimizations speci"cally for userspace eBPF runtimes. In doing
so, !XDP not only improves performance but also enables XDP
programs to run in environments where kernel eBPF is unavail-
able, extending the reach of the eBPF ecosystem into previously
inaccessible scenarios.

We implement !XDP as a drop-in replacement runtime and
evaluate it on a range of NFs, from simple packet "lters to com-
plex load balancers like Katran. With the same eBPF application
binary, !XDP achieves throughput gains of up to 3.3× compared
to in-kernel execution and improves Katran’s performance by up
to 40%. Crucially, !XDP delivers these bene"ts while preserving
the trusted eBPF development model and integration work#ows,
making it easier for operators to adopt and scale across di!erent
environments.

The contributions of this paper are as follows:
(1) We present !XDP, a runtime that supports real-world, un-

modi"ed eBPF-based NFs in userspace, combining the ease
of deployment, veri"cation, and vast ecosystem of eBPF with
the #exibility and performance of kernel-bypass frameworks.

(2) We develop optimization techniques for userspace eBPF run-
times that reduce execution overhead and improve the per-
formance of complex NFs.

(3) We show the e!ectiveness of !XDP by showing signi"cant
performance bene"ts for various NFs.

(4) We discuss potential directions for future work in the de-
ployment and optimization of eBPF.

2 Background and Motivation
This section introduces the background on eBPF/XDP, their veri"-
cation and control plane support, highlights potential optimization
opportunities, and examines existing userspace deployment ap-
proaches to clarify the motivating trade-o!s.

2.1 eBPF Network Functions
eBPF: eBPF [13] allows safe, e$cient user-de"ned code to run in
the Linux kernel. Initially for packet "ltering, it now supports many
use cases and platforms, including userspace VMs like ubpf [12],
rbpf [35], and eBPF for Windows [27]. Developers write restricted
C, compile it to eBPF bytecode, which is veri"ed [22], loaded via
bpf(), attached to a kernel hook, and triggered on hook events.
In-kernel veri"cation imposes strict constraints, including control-
#ow safety (no unbounded loops or recursion), memory safety (no
arbitrary, out-of-bounds or uninitialized memory reads), resource
safety (no deadlocks or resource leaks) and no hardware exceptions
(no division by zero). The veri"er restricts the use of kernel helpers
and kfuncs [14] to those with correct argument types, and requires
type-correct, bounded references to eBPF maps.

NFs can be core components of production infrastructure serving
hundreds of machines (e.g., load-balancer or "rewall deployed at

scale). Veri"cation is crucial in production systems where robust-
ness, safety, and maintainability are as important as raw speed. For
example, a recent site-wide incident [38] at Bilibili, a leading Asian
streaming service, demonstrated how an in"nite loop in an API
gateway can trigger major outages.

XDP: The eXpress Data Path (XDP)[24] enables eBPF NFs to
process packets early in the network stack for near line-rate perfor-
mance. Widely used for low-latency tasks like DDoS protection[7],
load balancing [18], and monitoring [1], XDP runs in driver (native)
or kernel (SKB) mode based on driver support.

eBPF-based NFs rely on a control plane application — a userspace
process managing program installation, map con"guration, pol-
icy updates, and runtime adjustments. For instance, Katran’s [9]
control plane dynamically updates eBPF maps to re#ect changes
in backend server states and reads the statistics map for health
checks. NetEdit’s [3] control plane orchestrates safe, dynamic eBPF-
based NFs across thousands of services and millions of servers,
o!ering uni"ed abstractions, decoupled policies, and extensive
testing. Control planes typically use libraries like libbpf [19] or
libxdp [37]. However, even a basic tutorial-level XDP application
such as httpdump demands hundreds of calls to over 15 syscalls
and shared-memory operations for e$cient management and com-
munication—requirements that few userspace runtimes can meet
without major improvements. This incompatibility challenge pre-
vents complex eBPF programs from being adequately loaded and
veri"ed outside the kernel.

AF_XDP: To address some deployment complexity while retain-
ing the performance bene"ts of userspace packet processing, the
Linux community introduced the AF_XDP [23]. AF_XDP aims to
combine DPDK-level performance with the ease of deployment of
kernel-based networking. It employs a small XDP program to "lter
and redirect packets to the userspace before they enter the kernel’s
networking stack. Applications can access these packets through a
new socket family, AF_XDP sockets. It supports two modes: Copy
mode (higher overhead, broad compatibility) and Zero-copy mode
(better performance, but hardware-dependent). However, by exe-
cuting in userspace, developers still need to manage complexity and
correctness themselves, with no built-in veri"cation, safeguards,
or standard policy mechanisms. Thus, achieving the same ecosys-
tem and operational convenience as kernel-based solutions is non-
trivial.

2.2 Optimization Margins in XDP

Figure 1: Katran !amegraph in driver mode

To identify optimization opportunities in XDP programs, we
measure Katran’s performance in Figure 1(methodology in subsec-
tion 5.1). In our study we observed the following. First, the eBPF
program consumes roughly 67% of the CPU time, while the rest is

9

!XDP: Frictionless XDP Deployments in Userspace eBPF ’25, September 8–11, 2025, Coimbra, Portugal

spent in the network driver, suggesting room for improvement in
both the eBPF logic and the driver. Second, focusing on the eBPF
program, about 50% of its CPU time is devoted to maps and helper
calls. For Katran, 50% of packets result in an LRU cache hit, em-
phasizing the need for map and helper optimizations. On an LRU
cache miss, Katran calculates a hash to determine packet direction,
increasing CPU utilization. On a hit, it spends more time on map
accesses and helper calls, as no hash computation is required.

3 Design
To enable userspace execution of eBPF-based NFs, we focus on
existing XDP programs and design !XDP to meet the following
three key requirements: i) remain compatible with existing XDP
programs and their control planes to retain veri"cation-based safety,
ease of deployment, and bene"t from the large eBPF ecosystem; ii)
support di!erent deployment models tailored to host capabilities;
and iii) operate with or without access to the original NF source
code.

3.1 Overview
!XDP consists of a control and a data plane process sharing mem-
ory for eBPF maps, bytecode, and metadata. It uses a userspace
eBPF runtime with LLVM-based just-in-time (JIT) and ahead-of-
time (AOT) compiling, while supporting a DPDK and an AF_XDP
deployment modes. The control plane loads, veri"es, and man-
ages eBPF programs; the data plane executes them, enabling high-
performance userspace processing while remaining compatible
with existing eBPF programs. Figure 2 summarizes !XDP’s two
deployment modes and compares them to in-kernel XDP NFs (Fig-
ure 2A). Figure 2B illustrates the DPDK-based deployment, where
two processes and the RX/TX rings run entirely in userspace. In
the AF_XDP case (Figure 2C), RX and TX rings are shared with
the kernel, requiring a kernel-resident XDP program to forward
packets to the AF_XDP socket.

3.2 Optimizations
Running in userspace enables !XDP to easily implement optimiza-
tions that improve e$ciency and reduce overhead. Although de-
signed for !XDP, these optimizations could also bene"t kernel eBPF
with kernel changes (Section 7).

3.2.1 Inline Optimizations. Our analysis in subsection 2.2 shows
that much of the eBPF program’s execution time is spent on helper
functions and map accesses. Therefore, !XDP inlines these calls
during JIT/AOT compilation, applying optimizations directly to the
eBPF bytecode without requiring the original C source.

Inline Helpers: Common helpers (e.g., data copying, strcmp,
and calc_csum) are simple, do not interact with maps or other
programs, and are implemented as function calls due to veri"er
constraints. By inlining them, !XDP avoids these calls and enables
LLVM optimizations. !XDP provides LLVM IR implementations
of these helpers, which it compiles and links with the lifted eBPF
bytecode.

Inlining helper calls reduces instructions and unlocks further
optimizations. It removes the function call overhead (register saves,
stack manipulation) and bene"ts frequently used helpers like
bpf_xdp_load_bytes and bpf_xdp_adjust_head. Inlining with

Table 1: Inlined Helpers for XDP and eBPF

Helper Function Description

bpf_csum_diff Calculate checksum di!.
bpf_xdp_load_bytes Load bytes from XDP frame.
bpf_xdp_store_bytes Store bytes to XDP frame.
bpf_strncmp Compare strings.
bpf_xdp_adjust_tail Adjust XDP frame tail=.
bpf_xdp_adjust_head Adjust XDP frame head.

constant arguments allows LLVM to perform constant folding and
propagation, and dead code elimination to remove unnecessary
checks. Inlined code inside loops enables loop unrolling, improving
performance in cycle-intensive helpers like bpf_csum_diff — for
example, when processing small IPv6 headers. Finally, exposing
more instructions to the optimizer helps allocate registers more
e$ciently and improves overall performance.

Inline Maps: !XDP applies the same idea to map accesses. In
kernel eBPF, maps are accessed via helpers, whereas !XDP inlines
maps as global variables in the JITed LLVM IR. Array maps become
directly accessible in memory as regular global variables without
helper, while hash maps rely on inlined helpers. After deployment,
global maps remain in shared memory for control plane access,
and per-CPU maps have a copy for each CPU. !XDP allows pro-
grammers tomark inlinemaps as frozen (read-only const variables),
enables constant folding and propagation. Instead of linking helpers
at runtime, !XDP can generate a native ELF binary with maps and
helpers included, easing deployment and allowing execution on
devices without JIT and runtime dependencies.

Figure 3 shows !XDP’s compile-and-run work#ow, highlighting
where inline optimizations occur (black arrows). The application,
written in a high-level language, is "rst compiled to LLVM IR via
clang (1) and then to eBPF bytecode (2), identical for both kernel
and !XDP. At runtime, !XDP uses the kernel veri"er to verify and
lifts the bytecode to LLVM IR (3), applies optimizations (4), compiles
it to native code (5), and executes the program (6).

3.2.2 LLVM IR Optimizations. When distributing and loading eBPF
bytecode as described before, !XDP loses many optimization op-
portunities because eBPF bytecode discards valuable semantic in-
formation. Although eBPF bytecode is suitable for veri"cation, it
is not ideal for producing the most e$cient native code. For in-
stance, the eBPF backend uses a generic register assignment and a
simpli"ed data layout, and does not support architecture-speci"c
instructions (e.g., llvm.memcpy). The type information may be lost
when lifting eBPF bytecode to LLVM IR. When possible, !XDP uses
the original LLVM IR from source instead of lifting it from eBPF
bytecode. It enhances o%ine compilation by packaging this LLVM
IR with the bytecode for distribution. At load time, !XDP uses the
IR to generate optimized native code, while the bytecode is still
used for veri"cation.

The orange arrows in Figure 3 illustrate this alternative work#ow.
During the o%ine compilation, !XDP bypasses the compilation and
lift steps by transforming and relocating directly on LLVM IR. !XDP
transforms the LLVM IR to ensure it can access helpers by function
call instead of address, and has the correct calling conventions

10

eBPF ’25, September 8–11, 2025, Coimbra, Portugal Yusheng Zheng, Panayiotis Gavriil, and Marios Kogias

Userspace

Kernel space

A. Kernel XDP C. AF_XDPB. DPDK

Dataplane

Packet processing

Kernel XDP

Control Plane
Application

RX

Control Plane
Application

Bpftime Loader

Shared memoryBPF maps

Dataplane

Packet processing

Control Plane
Application

Bpftime Loader

Shared memoryBPF maps

Kernel XDP

RX TX

Figure 2: eBPF XDP program deployment in kernel and userspace enabled by !XDP using DPDK and AF_XDP. The "le icon
represents the XDP program.

Distribute

eBPF
source

LLVM IR

eBPF
Bytecode

LLVM IR

LLVM IR

Native

3.

2.

5.

AOT runtime

a.

InlineInline

1.

6.

4.
b.

d.c. LLVM IR

e.

Helper/map IRHelper/map IR

Figure 3: Compilation and deployment pipeline. The black
pipeline does not assume access to LLVM IR. The orange
pipeline describes the LLVM IR optimizations.

for execution in the eBPF runtime (a). The transformed LLVM IR
is distributed along with the eBPF bytecode. At runtime, !XDP
relocates the distributed LLVM IR to ensure it has access to maps
with the correct map id (b), applies inline and other optimizations
(c), and then JIT/AOT compiles and executes it (e).

To enhance safety, the LLVM IR can be signed by the toolchain.
If the compiler is untrusted, tools like alive-tv [20] can verify it
against IR lifted from eBPF bytecode. By bypassing eBPF bytecode
during run time, !XDP achieves better register allocation, tailored
data layouts, and richer type-based optimizations. Combined with
userspace execution, this allows e$cient native code leveraging
SIMD and other hardware features not available in kernel eBPF.

4 Implementation
!XDP consists of two main parts: a userspace eBPF runtime and a
compilation toolchain that implements the optimizations. !XDP is
implemented with 3912 lines of C/C++ for the runtime and loader,
1274 lines of Python for optimization and loader scripts, and 524
lines of C for inline libraries.

eBPF Runtime: !XDP builds on bpftime [42], a userspace
runtime designed for eBPF tracing programs. We chose bpftime
because it: (i) supports loading and managing eBPF programs from
a control plane application via the bpftime loader, (ii) uses shared
memory for eBPF maps; and (iii) is currently the fastest eBPF run-
time, leveraging LLVM for JIT/AOT compilation. However, bpftime
does not support XDP when we start the project. !XDP extend the

bpftime loader for the NF control plane and its runtime for the
NF data plane. We extended bpftime to attach XDP programs to
network interfaces using bpf link and added support for network-
related maps (e.g. LPM_TRIE, LRU_HASH, ARRAY_OF_MAPS, DE-
VMAP) and helpers (bpf_xdp_*, bpf-_csum_di!). These patches
have already been upstreamed.

A challenge was handling data structures like xdp_md, where
data and data_end are 32-bit in kernel but require 64-bit pointers
in userspace. While the kernel JIT handles this automatically, it’s
error-prone in userspace. !XDP solves this using CO-RE [28] and a
custom BTF [15], allowing the same eBPF bytecode to run in both
environments without recompilation.

Runtime Loader: When the control plane application loads
an eBPF program, the runtime loader "rst veri"es its safety, then
either lifts the eBPF bytecode to LLVM IR or extracts LLVM IR
directly from the eBPF ELF "le, depending on the compilation path.
It then runs LLVM optimization passes, producing a "nal LLVM IR
representation of the eBPF program. Next, the runtime compiles this
IR into native code using opt-14 [34] and llc-14 [33], optimizing
for the target architecture. Finally, the loader supplies the native
code to the userspace XDP runtime for packet processing.

Inline Optimization: !XDP provides a Python tool, uxopt, to
perform inline optimizations (steps c or 4 in Figure 3). uxopt in-
cludes a pre-compiled LLVM IR library containing helper functions
and implementations for ARRAY and HASH_MAP. It merges this li-
brary with the eBPF program LLVM IR and marks these helper
functions as always inline, allowing the LLVM optimizer to apply
aggressive inlining and other code improvements.

LLVM IROptimization: !XDPmodi"es the o%ine compilation
phase to enable LLVM IR optimizations. It introduces a tool called
uxcc, which can replace clang in the build toolchain. uxcc uses
clang-14 [32] to produce unoptimized LLVM IR and then compiles
optimized eBPF bytecode from it. During this process, it adjusts
the IR for correct stack layout and helper name mangling, ensuring
compatibility with the bpftime runtime. uxcc packages both the
LLVM IR and the eBPF bytecode into a single ELF "le and signs
it for secure distribution. At deployment time, the !XDP loader
veri"es the eBPF bytecode for safety and checks the IR signature. It
relocates maps within the LLVM IR, so helper calls use the correct
map IDs. If the compiler is untrusted, !XDP can use Alive2 [20]
to con"rm that the included LLVM IR is functionally equivalent to
the veri"ed eBPF bytecode.

11

!XDP: Frictionless XDP Deployments in Userspace eBPF ’25, September 8–11, 2025, Coimbra, Portugal

���

�

��

��

	���

	
�

	
��

	��

���
�#�&

�

�

�

�

	�

	

	�

	�

*�#�!�

�

	

�

�

�

�

*�#����'%&�&���

���

�

��

��

	���

	
�

	
��

	��

���
*�#��"'!&�$

�

�

�

�

	�

	

	�

	�
*�#���!�&�

�

�

�

�

	�

	

	�

	�

*�#��"�������!��$

�

�

�

�

	�

	

*�#���$�)���

�

�

�

�

	�

	

	�
*�#��&&#�' #

�

�

�

�

��&$�!

��
$"
'�
�#
'&
���
##
%�

��*�#���(�#�����(�$(� "�� %��� "��

Figure 4: Throughput in Pkt/s for di#erent kernel and userspace con"gurations for all the evaluated NFs.

��� 	�

�� ��
 ���� �	�
 �
�� ���
 	���
�� ���$� �'��%#�

����
������

�"&��!��
#����!��

!
 �
��
%"
�$
�!
 #

Figure 5: xdp_tx NF latency

5 Evaluation
In this section, we evaluate !XDP ’s performance under di!erent
deployment con"gurations, measure optimization techniques im-
pact, and assess the program portability provided by !XDP. Our
evaluation seeks to answer the following questions:

(1) Is there any development cost in porting existing XDP pro-
grams to !XDP?

(2) What is the performance bene"t of running XDP in userspace
on DPDK or AF_XDP?

(3) What is the impact of the proposed optimization techniques
on the performance of eBPF XDP-based NFs?

Table 2 summarizes the evaluated XDP programs, which come
from the Linux kernel, Katran [9], and other open-source reposito-
ries [2, 11]. They cover a range of processing needs and complexities
(from simple NFs to more sophisticated applications like Meta’s
Katran, and from "rewalls and load-balancers to observability tools)
allowing us to broadly demonstrate !XDP ’s e!ectiveness. All pro-
grams run seamlessly in !XDP under all con"gurations without
recompilation and pass the kernel veri"er.

5.1 Methodology
Our testbed includes two serverswith dual-portMellanoxConnectX-
6 Dx 100 Gbps NICs, connected back-to-back. Both use Intel Xeon
Gold 5318N CPUs (24C/48T) on a single NUMA node (CPU 0–47),
with 1.1 MiB L1d, 768 KiB L1i, 30 MiB L2, and 36 MiB L3 caches. One
server (DUT) runs the NF; the other runs Pktgen [30] as the load
generator. The DUT uses Linux kernel 6.7.10; the generator runs
6.3.4. Pktgen sends 64B TCP or 128B ICMP packets, which the DUT
processes and returns for measurement. All eBPF programs run
on a single core. As a baseline, we use XDP driver and skb modes,
redirecting packets to one RX queue via ethtool. !XDP is tested
with both DPDK and AF_XDP. AF_XDP uses RX queue 0, 4KB
frame size, 64-packet batches, and enables SO_PREFER_BUSY_POLL
and XDP_USE_NEED_WAKEUP. Linux uses SCHED_OTHERwith priority
0. DPDK is con"gured with a 512 MB mbuf pool.

Name Description Source Component Insns
xdp_tx Basic Mac-

swap and TX
hXDP [4] - 19

xdping A ping (ICMP)
server

Linux ker-
nel sample

Helpers 79

xdp ad-
just tail

Generates
ICMPv4
"packet too
big" reply

Linux ker-
nel sample

Helpers 151

xdp-
counter

Control and
count packets
in array maps

Katran [9] Array map 41

xdp-
length

Summary
packet lengths
in hash map

Hand-
crafted

Hash map 41

simple
load
balancer

A load balancer
using array
map and hash

Hand-
crafted

Array map
and helpers

167

blacklist
"rewall

A hash map
L2 "rewall and
VRRP "ltering

GitHub [2] Per-CPU
hash map

128

xdp-
httpdump

Observe HTTP
packet

Github [11] Helpers,
ring bu!er

101

Katran Meta’s load bal-
ancer

Katran [9] Array, hash
and LRU
map, helpers

2247

Table 2: Descriptions of various XDP programs evaluated. All
pass the veri"cation.

5.2 Deployment Versatility and its Impact
We focus on the throughput and latency impact of the di!erent
!XDP userspace deployment modes across various NFs. For this
experiment, we use the fully optimized eBPF programs and assume
access to source LLVM IR.

Figure 4 summarizes the throughput results in Pkts/s. We ob-
serve that DPDK maintains the highest performance across dif-
ferent network functions (NFs), given its poll mode driver. For
simple eBPF NFs like xdp-counter and xdp_adj-ust_tail, the
kernel drv_mode is faster than AF_XDP. For complex NFs like
xdp-load-balancer, xdping, and katran, AF_XDP surpasses
drv_mode due to the better-optimized code enabled by the userspace
execution and produced by !XDP. This is a strong "nding indicat-
ing that existing eBPF programs can achievemuchmore throughput
while still depending entirely on technologies that are part of any

12

eBPF ’25, September 8–11, 2025, Coimbra, Portugal Yusheng Zheng, Panayiotis Gavriil, and Marios Kogias

���

��

���

���

	���

	
��

	���

	���

���
)�"�%)

�

�

	�

	�

�

�
)�"� �

�

�

�

	�

	

	�

)�"����&$%�%���

���

��

���

���

	���

	
��

	���

	���

���
)�"��!& %�#

���

��

���

���

	���

	
��

	���

	���
)�"��� �%�

�

�

�

	�

	

	�

	

)�"��!������� ��#

���

��

���

���

	���

	
��

	���

	���

)�"���#�(���

�

�

�

	�

	

	�
)�"��%%"�&�"

�

�

�

��%#�

��
#!
&�

�"
&%
���

""
$�

�"����!%���$� �"����"��� �� � �"�����'���# �"�����'���#�� �� �

Figure 6: Impact of optimization techniques on eBPF XDP-based network functions. As in 3, (5) is for dpdk_aot_base, (4) is for
dpdk_bpf_inline, (e) is for dpdk_llvm_ir, (c) is for dpdk_llvm_ir_inline.

Linux distribution, hence avoiding the deployment complexities of
DPDK. skb_mode shows the lowest performance due to its higher
processing overhead and the extra soft IRQ.

To evaluate latency, we deploy the simplest NF (xdp_tx) that
swaps MACs and echoes packets, measuring unloaded round-trip
latency. Figure 5 shows results: DPDK has the lowest latency, while
AF_XDP has slightly higher latency than driver mode but better
throughput in complex NFs due to userspace execution.

5.3 Optimization Techniques
To evaluate the optimizations impact, we use the best deployment
setup from the previous section (DPDK) and compare the achieved
throughput before and after applying them. Figure 6 shows packet
rates with andwithout inlining, using the non-inlined version as the
baseline across both compilation pipelines. In dpdk_llvm_aot, the
bpftime AOT compiler converts eBPF instructions to LLVM IR, then
uses opt [34] and llc [33] with O3 optimizations to compile IR to
native code (i.e., no inline optimizations). dpdk_bpf_inline applies
the inline optimizations on the LLVM IR lifted from eBPF byte code
(step 4 in Figure 3). dpdk_llvm_ir represents the work#ow that has
access to the original LLVM IR (orange pipeline without inlining in
Figure 3), while dpdk_llvm_ir_inline adds inlining.

The results show signi"cant performance gains from additional
optimizations, especially for complex NFs—e.g., Katran’s through-
put improved by 83%. The gap between the AOT baseline and
kernel driver mode is mainly due to userspace helpers (via vDSO)
and di!erent map implementations in bpftime. In one case, inlining
slightly reduced throughput (xdp-counter in dpdk_bpf_inline)
due to increased branch prediction overhead.

6 Related work
There is prior work that focuses on out-of-kernel eBPF execu-
tion. Frameworks such as ubpf [12], rbpf [35], and DPDK’s BPF
library [31] execute eBPF programs in userspace, but they focus
mainly on bytecode and lack support for essential NF components,
such as maps, especially important for XDP-based NFs. Unlike
these approaches, !XDP allows a safe and seamless transition to
userspace execution. Parola et al. [29] compare userspace and in-
kernel processing, highlighting AF_XDP’s bene"ts in edge data
centers. De Coninck et al. [6] extend eBPF to plugable protocols
like PQUIC and xBGP, enabling network programmability outside

of Linux. hXDP [4] implements an eBPF soft-core on FPGAs, and
eHDL [36] generates hardware designs from eBPF/XDP.

Recent work also targets eBPF runtime optimizations. Mao et
al. [25] present Merlin, a compile-time multi-tier optimization
framework, while !XDP focuses on runtime JIT/AOT optimizations.
Domain-speci"c optimizations include Miano et al. [26]’s in-kernel
tra$c control NFs and Xu et al. [39]’s K2, a synthesis-based com-
piler with formal guarantees but limited robustness. eNetSTL [40]
implements certain common functionalities in native code. In con-
trast, !XDP provides an integrated compiler and runtime co-design,
delivering substantial performance gains for eBPF XDP-based NFs
independent of their business logic.

7 Future Work
In the current !XDP version, NFs can only drop or transmit packets
(XDP_DROP, XDP_TX) but not forward them to the kernel. We
plan to support re-injection into the kernel to enable broader use
cases and compatibility with other network eBPF programs. Many
of !XDP’s optimizations, like inlining and SIMD usage, could also
apply to kernel executionwithout breaking veri"er guarantees. This
would require kernel changes (e.g., saving FPU state), but based on
our results, the performance gains may outweigh the additional
overhead for complex NFs.

8 Conclusion
This paper introduces !XDP, a novel system that executes eBPF
XDP-based network functions in userspace using kernel-bypass
techniques and runtime optimizations. !XDP challenges the status
of having to choose between “safe but limited” kernel solutions
and “fast but fragile” userspace frameworks. By enabling a seamless
transition from kernel to userspace without modifying the original
eBPF code, !XDP o!ers enhanced safety, performance, and easy
deployment, achieving up to 3.3× higher throughput for simple NFs
and 40% better performance for Katran over kernel execution.

Acknowledgements
We thank the anonymous reviewers for their detailed and valuable
feedback. This work is supported by a gift from Mysten Labs.

Ethics Statement
This work does not raise any entical considerations.

13

!XDP: Frictionless XDP Deployments in Userspace eBPF ’25, September 8–11, 2025, Coimbra, Portugal

References
[1] Marcelo Abranches, Oliver Michel, Eric Keller, and Stefan Schmid. 2021. E$cient

Network Monitoring Applications in the Kernel with eBPF and XDP. In 2021 IEEE
Conference on Network Function Virtualization and Software De!ned Networks
(NFV-SDN). 28–34. https://doi.org/10.1109/NFV-SDN53031.2021.9665095

[2] acassen. 2018. XDP FW: eXpress Data Path FireWall module. (2018). https:
//github.com/acassen/xdp-fw.

[3] Theophilus A. Benson, Prashanth Kannan, Prankur Gupta, Balasubramanian
Madhavan, Kumar Saurabh Arora, Jie Meng, Martin Lau, Abhishek Dhamija, Rajiv
Krishnamurthy, Srikanth Sundaresan, Neil Spring, and Ying Zhang. 2024. NetEdit:
An Orchestration Platform for eBPF Network Functions at Scale. In Proceedings
of the ACM SIGCOMM 2024 Conference (ACM SIGCOMM ’24). Association for
Computing Machinery, New York, NY, USA, 721–734. https://doi.org/10.1145/
3651890.3672227

[4] Marco Spaziani Brunella, Giacomo Belocchi, Marco Bonola, Salvatore Pontarelli,
Giuseppe Siracusano, Giuseppe Bianchi, Aniello Cammarano, Alessandro
Palumbo, Luca Petrucci, and Roberto Bifulco. 2022. hXDP: E$cient software
packet processing on FPGA NICs. Commun. ACM 65, 8 (2022), 92–100.

[5] cilium. 2025. eBPF-based Networking, Security, and Observability. (2025). https:
//github.com/cilium/cilium.

[6] Quentin De Coninck, Louis Navarre, and Nicolas Rybowski. 2024. On Integrating
eBPF into Pluginized Protocols. SIGCOMM Comput. Commun. Rev. 53, 3 (feb
2024), 2–8. https://doi.org/10.1145/3649171.3649173

[7] Marinos Dimolianis, Adam Pavlidis, and Vasilis Maglaris. 2021. Signature-Based
Tra$c Classi"cation and Mitigation for DDoS Attacks Using Programmable
Network Data Planes. IEEE Access 9 (2021), 113061–113076. https://doi.org/10.
1109/ACCESS.2021.3104115

[8] DPDK. 2025. Data Plane Development Kit. (2025). https://github.com/DPDK/
dpdk.

[9] facebookincubator. 2018. A high performance layer 4 load balancer. (2018).
https://github.com/facebookincubator/katran.

[10] fd.io. 2018. Vector Packet Processing. (2018). https://docs.fd.io/vpp/18.11/.
[11] hamidrezakhosroabadi. 2025. A simple xdp application to observe tcp connections

in userspace. (2025). https://github.com/hamidrezakhosroabadi/xdp-observer.
[12] iovisor. 2025. Userspace eBPF VM. (2025). https://github.com/iovisor/ubpf.
[13] Linux kernel maintainers. 2025. BPF document. (2025). https://docs.kernel.org/

bpf/index.html.
[14] Linux kernel maintainers. 2025. BPF Kernel Functions (kfuncs)#. (2025). https:

//docs.kernel.org/bpf/kfuncs.html.
[15] Linux kernel maintainers. 2025. BPF Type Format (BTF). (2025). https://docs.

kernel.org/bpf/btf.html.
[16] Linux kernel maintainers. 2025. PCI Express I/O Virtualization Howto. (2025).

https://docs.kernel.org/PCI/pci-iov-howto.html.
[17] l3af maintainers. 2025. Complete lifecycle management of eBPF programs in the

kernel. (2025). https://l3af.io/.
[18] Jung-Bok Lee, Tae-Hee Yoo, Eo-Hyung Lee, Byeong-Ha Hwang, Sung-Won Ahn,

and Choong-Hee Cho. 2021. High-Performance Software Load Balancer for
Cloud-Native Architecture. IEEE Access 9 (2021), 123704–123716. https://doi.org/
10.1109/ACCESS.2021.3108801

[19] libbpf Authors. 2025. Libbpf. (2025). https://libbpf.readthedocs.io/en/latest/
libbpf_overview.html.

[20] Nuno P Lopes, Juneyoung Lee, Chung-Kil Hur, Zhengyang Liu, and John Regehr.
2021. Alive2: bounded translation validation for LLVM. In Proceedings of the 42nd
ACM SIGPLAN International Conference on Programming Language Design and
Implementation. 65–79.

[21] Dana Lu, Boxuan Tang, Michael Paper, and Marios Kogias. 2024. Towards Func-
tional Veri"cation of eBPF Programs. In Proceedings of the ACM SIGCOMM 2024
Workshop on eBPF and Kernel Extensions. 37–43.

[22] BPF maintainers. 2025. eBPF veri"er. (2025). https://docs.kernel.org/bpf/veri"er.
html.

[23] Linux maintainers. 2025. AF_XDP. (2025). https://www.kernel.org/doc/html/
next/networking/af_xdp.html.

[24] Linux maintainers. 2025. XDP - eXpress Data Path. (2025). https://prototype-
kernel.readthedocs.io/en/latest/networking/XDP/.

[25] Jinsong Mao, Hailun Ding, Juan Zhai, and Shiqing Ma. 2024. Merlin: Multi-tier
Optimization of eBPF Code for Performance and Compactness. In Proceedings of
the 29th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 3. 639–653.

[26] Sebastiano Miano, Xiaoqi Chen, Ran Ben Basat, and Gianni Antichi. 2023. Fast
In-kernel Tra$c Sketching in eBPF. SIGCOMM Comput. Commun. Rev. 53, 1 (apr
2023), 3–13. https://doi.org/10.1145/3594255.3594256

[27] microsoft. 2025. eBPF for Windows. (2025). https://github.com/microsoft/ebpf-
for-windows.

[28] nakryiko. 2025. BPF CO-RE reference guide. (2025). https://nakryiko.com/posts/
bpf-core-reference-guide/.

[29] Federico Parola, Roberto Procopio, Roberto Querio, and Fulvio Risso. 2023. Com-
paring User Space and In-Kernel Packet Processing for Edge Data Centers. SIG-
COMM Comput. Commun. Rev. 53, 1 (apr 2023), 14–29. https://doi.org/10.1145/
3594255.3594257

[30] pktgen. 2025. DPDK based packet generator. (2025). https://github.com/pktgen/
Pktgen-DPDK.

[31] DPDK Project. 2023. BPF Library. (2023). https://doc.dpdk.org/guides/prog_
guide/bpf_lib.html Accessed 2025-07-22.

[32] LLVM project. 2025. Clang 14.0.0 documentation. (2025). https://releases.llvm.
org/14.0.0/tools/clang/docs/ReleaseNotes.html.

[33] LLVM project. 2025. llc - LLVM static compiler. (2025). https://llvm.org/docs/
CommandGuide/llc.html.

[34] LLVM project. 2025. opt - LLVM optimizer. (2025). https://llvm.org/docs/
CommandGuide/opt.html.

[35] qmonnet. 2025. Rust virtual machine and JIT compiler for eBPF programs. (2025).
https://github.com/qmonnet/rbpf.

[36] Alessandro Rivitti, Roberto Bifulco, Angelo Tulumello, Marco Bonola, and Salva-
tore Pontarelli. 2023. eHDL: Turning eBPF/XDP Programs into Hardware Designs
for the NIC. 208–223. https://doi.org/10.1145/3582016.3582035

[37] xdp project. 2025. xdp-tools - Library and utilities for use with XDP. (2025).
https://github.com/xdp-project/xdp-tools.

[38] XRay. 2025. Resolving Bilibili’s major site incident with OpenResty XRay.
(2025). https://medium.com/@openresty/resolving-bilibilis-major-site-incident-
with-openresty-xray-70ae6e1d875a.

[39] Qiongwen Xu, Michael D. Wong, Tanvi Wagle, Srinivas Narayana, and Anirudh
Sivaraman. 2021. Synthesizing safe and e$cient kernel extensions for packet
processing. In Proceedings of the 2021 ACM SIGCOMM 2021 Conference (SIGCOMM
’21). Association for Computing Machinery, New York, NY, USA, 50–64. https:
//doi.org/10.1145/3452296.3472929

[40] Bin Yang, Dian Shen, Junxue Zhang, Hanlin Yang, Lunqi Zhao, Beilun Wang,
Guyue Liu, and Kai Chen. 2025. eNetSTL: Towards an In-kernel Library for High-
Performance eBPF-based Network Functions. In Proceedings of the Twentieth Eu-
ropean Conference on Computer Systems (EuroSys ’25). Association for Computing
Machinery, New York, NY, USA, 42–58. https://doi.org/10.1145/3689031.3696094

[41] Arseniy Zaostrovnykh, Solal Pirelli, Rishabh Iyer, Matteo Rizzo, Luis Pedrosa,
Katerina Argyraki, and George Candea. 2019. Verifying software network func-
tions with no veri"cation expertise. In Proceedings of the 27th ACM Symposium on
Operating Systems Principles (SOSP ’19). Association for Computing Machinery,
New York, NY, USA, 275–290. https://doi.org/10.1145/3341301.3359647

[42] Yusheng Zheng, Tong Yu, Yiwei Yang, Yanpeng Hu, XiaoZheng Lai, and Andrew
Quinn. 2023. bpftime: userspace eBPF Runtime for Uprobe, Syscall and Kernel-
User Interactions. (2023). arXiv:2311.07923

14

https://doi.org/10.1109/NFV-SDN53031.2021.9665095
https://github.com/acassen/xdp-fw
https://github.com/acassen/xdp-fw
https://doi.org/10.1145/3651890.3672227
https://doi.org/10.1145/3651890.3672227
https://github.com/cilium/cilium
https://github.com/cilium/cilium
https://doi.org/10.1145/3649171.3649173
https://doi.org/10.1109/ACCESS.2021.3104115
https://doi.org/10.1109/ACCESS.2021.3104115
https://github.com/DPDK/dpdk
https://github.com/DPDK/dpdk
https://github.com/facebookincubator/katran
https://docs.fd.io/vpp/18.11/
https://github.com/hamidrezakhosroabadi/xdp-observer
https://github.com/iovisor/ubpf
https://docs.kernel.org/bpf/index.html
https://docs.kernel.org/bpf/index.html
https://docs.kernel.org/bpf/kfuncs.html
https://docs.kernel.org/bpf/kfuncs.html
https://docs.kernel.org/bpf/btf.html
https://docs.kernel.org/bpf/btf.html
https://docs.kernel.org/PCI/pci-iov-howto.html
https://l3af.io/
https://doi.org/10.1109/ACCESS.2021.3108801
https://doi.org/10.1109/ACCESS.2021.3108801
https://libbpf.readthedocs.io/en/latest/libbpf_overview.html
https://libbpf.readthedocs.io/en/latest/libbpf_overview.html
https://docs.kernel.org/bpf/verifier.html
https://docs.kernel.org/bpf/verifier.html
https://www.kernel.org/doc/html/next/networking/af_xdp.html
https://www.kernel.org/doc/html/next/networking/af_xdp.html
https://prototype-kernel.readthedocs.io/en/latest/networking/XDP/
https://prototype-kernel.readthedocs.io/en/latest/networking/XDP/
https://doi.org/10.1145/3594255.3594256
https://github.com/microsoft/ebpf-for-windows
https://github.com/microsoft/ebpf-for-windows
https://nakryiko.com/posts/bpf-core-reference-guide/
https://nakryiko.com/posts/bpf-core-reference-guide/
https://doi.org/10.1145/3594255.3594257
https://doi.org/10.1145/3594255.3594257
https://github.com/pktgen/Pktgen-DPDK
https://github.com/pktgen/Pktgen-DPDK
https://doc.dpdk.org/guides/prog_guide/bpf_lib.html
https://doc.dpdk.org/guides/prog_guide/bpf_lib.html
https://releases.llvm.org/14.0.0/tools/clang/docs/ReleaseNotes.html
https://releases.llvm.org/14.0.0/tools/clang/docs/ReleaseNotes.html
https://llvm.org/docs/CommandGuide/llc.html
https://llvm.org/docs/CommandGuide/llc.html
https://llvm.org/docs/CommandGuide/opt.html
https://llvm.org/docs/CommandGuide/opt.html
https://github.com/qmonnet/rbpf
https://doi.org/10.1145/3582016.3582035
https://github.com/xdp-project/xdp-tools
https://medium.com/@openresty/resolving-bilibilis-major-site-incident-with-openresty-xray-70ae6e1d875a
https://medium.com/@openresty/resolving-bilibilis-major-site-incident-with-openresty-xray-70ae6e1d875a
https://doi.org/10.1145/3452296.3472929
https://doi.org/10.1145/3452296.3472929
https://doi.org/10.1145/3689031.3696094
https://doi.org/10.1145/3341301.3359647
https://arxiv.org/abs/2311.07923

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 eBPF Network Functions
	2.2 Optimization Margins in XDP

	3 Design
	3.1 Overview
	3.2 Optimizations

	4 Implementation
	5 Evaluation
	5.1 Methodology
	5.2 Deployment Versatility and its Impact
	5.3 Optimization Techniques

	6 Related work
	7 Future Work
	8 Conclusion
	References

