
Tail-tolerance as a Systems Principle not a Metric
Marios Kogias
EPFL, Switzerland

Edouard Bugnion
EPFL, Switzerland

ABSTRACT
Tail-latency tolerance (or just simply tail-tolerance) is the
ability for a system to deliver a response with low-latency
nearly all the time. It it typically expressed as a systemmetric
(e.g., the 99th or 99.99th percentile latency) or as a service-
level objective (e.g., the maximum throughput so that the tail
latency is below a desired threshold).

We advocate instead thatmodern datacenter systems should
incorporate tail-tolerance as a core systems design principle
and not ametric to be observed, and that tail-tolerant systems
can be built out of large and complex applications whose
individual components may suffer from latency deviations.
This is analogous to fault-tolerance, where a fault-tolerant
system can be built out of unreliable components.
The general solution is for the system to control the ap-

plied load and keep it under the threshold that violates the
latency SLO. We propose to augment RPC semantics with
an architectural layer that measures the observed tail la-
tency and probabilistically rejects RPC requests maintaining
throughput under the threshold that violates the SLO. Our
design is application-independent, and does not make any
assumptions about the request service time distribution.

We implemented a proof of concept for such a tail-tolerant
layer using programmable switches, called SVEN.We demon-
strate that the approach is suitable even for microsecond-
scale RPCs with variable service times. Moreover, our ap-
proach does not induce measurable overheads, and can main-
tain the maximum achieved throughput very close to the
load level that would violate the SLO without SVEN.

ACM Reference Format:
Marios Kogias and Edouard Bugnion. 2020. Tail-tolerance as a Sys-
tems Principle not aMetric. In 4th Asia-PacificWorkshop on Network-
ing (APNet ’20), August 3–4, 2020, Seoul, Republic of Korea.ACM,New
York, NY, USA, 9 pages. https://doi.org/10.1145/3411029.3411032

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
APNet ’20, August 3–4, 2020, Seoul, Republic of Korea
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8876-4/20/08. . . $15.00
https://doi.org/10.1145/3411029.3411032

1 INTRODUCTION
Datacenter applications, such as web-search, e-commerce,
social-networking, etc. need to operate under strict Service-
Level-Objectives (SLO) for their tail-latency. Complying or
violating those SLOs instantly reflects on user satisfaction
and engagement. Thus, there is a tremendous on-going ef-
fort both in academia and industry in building low-latency
systems for microsecond-scale computing [2].
Single-digit round-trip times inside a datacenter are con-

sidered commonplacewith recent advancements in hardware
and software. Dataplane operating systems, such as IX [3],
and Arrakis [28] and kernel-bypassing techniques have re-
duced the system overheads present in commodity operating
systems. µs-scale schedulers such as ZygOS [29], and Shin-
juku [17] managed to reduce tail-latency even further com-
pared to dataplanes, with smarter scheduling. Systems such
as Shenango [25] brought efficiency while maintaining the
performance benefits. On the networking side, datacenter-
specific congestion control algorithms, such as Homa [23],
deal with tail behaviours coming from in-network delays
by almost eliminating in-network queueing. However, all
of the previous efforts approach tail-tolerance as a metric,
and report the achieved throughput at a specific latency SLO
in steady state when the offered load is below the system
capacity, ignoring the system behaviour under more realistic
unpredictable conditions with load bursts.
A tail-tolerant system, on the other hand, is designed to

operate according to a specific latency SLO and minimizes
the SLO violations under any conditions, trading throughput
for predictable behaviour. In this paper we advocate that tail-
tolerance should be approached as a system design principle
instead of a best-effort metric.
We draw inspiration from research on fault-tolerant sys-

tems. The latency of a complex fan-out request is defined
by the slowest sub-request [6]. Similarly the mean time to
failure of a complex system was defined by the mean time to
failure of its most failure-prone sub-component before the ad-
vancement in fault-tolerance research. However, reasoning
about fault-tolerance is a ubiquitous part of the system design
process today. System designers, leveraging the appropriate
form of redundancy, provision for their systems according to
the expected risk of failure and can provide explicit availabil-
ity guarantees. For example, a primary backup [4] system
can tolerate f failures out of f + 1 replicas, state machine

https://doi.org/10.1145/3411029.3411032
https://doi.org/10.1145/3411029.3411032

APNet ’20, August 3–4, 2020, Seoul, Republic of Korea M. Kogias and E. Bugnion

replication [22, 24] f out of 2f + 1, while and tandem pro-
cesses [12] one out of two, etc. There is no similar systematic
approach to reason about tail behaviours, though.

As a first step towards systematically tail-tolerant systems,
we design SVEN (SLO Violations ElimiNator), a system to
control the tail behaviour of latency critical services. SVEN
operates at the remote procedure call (RPC) level and is part
of the RPC transport or library, thus remaining application
agnostic. It is orthogonal to any existing scheduling or flow
control mechanisms, and can be used at any level inside a
fan-out/fan-in application, namely at the aggregator nodes or
the leaves. SVEN performs dynamic RPC admission control
based on the currently observed latency distribution aiming
to keep the incoming load below the threshold that violates
the target latency SLO.

We implemented an initial SVEN proof of concept on top
of R2P2 [21] that runs on a Barefoot Tofino ASIC [1]. Our
evaluation shows that SVEN can identify the load level that
violates the latency SLO across a variety of service time
distributions without any application-specific configuration,
and maintain throughput below that level, even in cases
where the in-coming load was above the system capacity.
SVEN splits its functionality between the programmable
switch’s control and dataplane and does not consume any
server resources.

2 MOTIVATION AND BACKGROUND
In this section we describe existing system mechanisms and
why they fell short in implementing tail-tolerance. Then, we
analyze the need and the fit for a tail-tolerant design based
on admission control for datacenter applications. Finally, we
briefly introduce R2P2 [21] a transport protocol for datacen-
ter RPCs that offers the right abstraction for our design, on
which we built SVEN.

2.1 Scheduling and Flow Control
Existing systems at any scale, single-node or distributed,
implement two basic functionalities, scheduling and flow
control. Scheduling determines the order at which requests
are executed in the system and the dedicated resources to
be used. Flow control is used to match the producer and the
consumer pace, it guarantees that the system has enough
capacity to serve new incoming requests, and creates back-
pressure if that is not the case.

Scheduling has a significant impact on the end-to-end re-
quest latency. Thus, different scheduling policies and systems
have been proposed for different usecases and timescales. Ex-
amples of scheduling policies are FIFO in ZygOS [29] and Pro-
cessor Sharing in Shinjuku [17] for CPU resources, or TCP’s
fair share and Homa’s Shortest-Remaining-Processing-Time
(SRPT) for network resources. Scheduling is a fine-grained

mechanism that operates at the request level, making deci-
sions for each individual request, considering execution time,
and trying to minimize latency, while it is evaluated based
on specific metrics, e.g., throughput at the latency SLO, flow
completion time, etc..

Flow control, on the other hand, is a coarse-grained mech-
anism to prevent system or performance collapse when the
system is under heavy load. It is SLO-agnostic and in most
cases it depends on the available memory on the system to
make decisions. While there are no explicit metrics to evalu-
ate a flow control mechanism, it can provide hard guarantees
about the system operation, e.g., the memory consumption
will never exceed a certain threshold.

Despite intertwined, those two mechanisms are indepen-
dent in most systems. Schedulers, such as CFS (Linux’s de-
fault scheduler) and BVT [8], control the CPU resources
of the system and are agnostic to the number of processes.
Operating systems, though, limit the number of processes,
which is the unit of scheduling, that can be created, as a form
of flow control for the available system memory. Systems
such as ZygOS [29], perform connection-level scheduling
in a µs-scale improving throughput at the latency SLO. The
same systems need to limit the number of currently opened
connections to avoidmemory scarcity, but ignore the number
of connections the system can serve under a certain latency
SLO. TCP’s congestion control decides when a sender can
transmit bytes, which is a form of scheduling, while TCP’s
flow control makes sure that the receiver has available space
in the socket buffer. Exceptions in this mechanism separation
are deadline-aware schedulers [35] and certain schedulers
for storage systems [14, 18].

Thus, we understand that the latency impact of those two
mechanisms is significant. Independently of scheduling and
flow control, the latency behavior as a function of the in-
coming load for any system is well-known and well-studied
in queuing theory. As the offered load approaches the sys-
tem saturation, latency goes to infinity since queuing time
increases. A scheduling mechanism can push this curve to
the right to achieve more throughput under the latency SLO,
without being able to control maximum latency, though. Flow
control controls queue depths at the receiver, thus can cap
the maximum latency at saturation.
Although flow control is the right mechanism to imple-

ment tail-tolerance, as it caps the maximum latency and
provides explicit guarantees, it is very coarse-grained in its
current form. Our goal is to design and build an SLO-aware
flow control mechanism that operates at the right abstraction,
which is not memory availability, while remaining agnostic
to existing scheduling and flow control mechanisms.

Tail-tolerance as a Systems Principle not a Metric APNet ’20, August 3–4, 2020, Seoul, Republic of Korea

2.2 Datacenter RPCs
Remote Procedure Calls (RPCs) are the basis of communi-
cation both within and across datacenters. Any interaction
that is described through a request-response pattern can be
considered an RPC and different protocols have been pro-
posed to deliver and serve RPCs, such as HTTP,gRPC, Thrift,
etc.. Latency SLOs are, also, defined at the RPC boundaries
as the percentage of requests that complete under a certain
latency threshold. Thus, RPCs provide the right abstraction
for any application-agnostic mechanism for tail-tolerance.
Datacenter applications usually communicate over RPCs

in complex fan-out/fan-in patterns in which an aggregator
node needs to contact several leaf nodes to compile a reply for
a specific request. The end-to-end latency for the top request
is determined by the slowest sub-request, as described by
Dean et. al. [6]. This communication pattern, though, reveals
a promising trade-off for system design.
Certain datacenter applications can trade-off harvest for

yield [9], according to the specific latency SLOs they need
to provide. Namely, latency-critical applications might be
willing to ignore some of the slow sub-RPCs, and thus reduce
the harvest and the quality of their response, in order to reply
sooner back to the client. Consider for example web-search:
a fast result is more useful than a complete result.

Mechanisms that trade-off harvest for yield can be imple-
mented either proactively or reactively. Previously proposed
systems, such as Zeta [15], terminate requests that exceed
their given service time, and return partial answers to the
client. Such reactive designs are steps towards tail-tolerance,
but suffer from two main pitfalls. First, they are applica-
tion specific — cancelling a request and removing transient
state requires application knowledge. Second, they waste
resources serving requests that are not used in the final an-
swer instead of serving new requests. Instead, a proactive de-
sign, that avoids performing sub-RPCs rather than cancelling
them, would reduce the need for application awareness and
use resources more efficiently.

2.3 R2P2
Given that latency SLOs are expressed at the RPC bound-
aries, the RPC layer is the natural fit for a tail-tolerant mech-
anism. We chose to implement SVEN on top of R2P2 [21]
due to its design choices that match our needs. We further
describe why R2P2 could be easily extended with an applica-
tion agnostic-mechanism for tail-tolerance to provide SLO
compliance guarantees at the transport layer.
R2P2 [21] (Request-Response-Pair-Protocol) is a trans-

port protocol designed for datacenter RPCs. It exposes the
request and response abstraction to the end-points and the
network, thus making RPCs application-agnostic and the

Clients MiddleBox Servers

REQ
RDY

REQ0
REQ0

REQN

REPLY R2P2-FEEDBACK

1

2
3

4

5
6

Figure 1: A request-reply exchange over R2P2. Only
REQ0 goes through the policy enforcing middlebox.

network RPC-aware. So, R2P2 already provides the right
abstraction for the proposed mechanism.
R2P2 was designed with in-network RPC policy enforce-

ment in mind. It separates the request and the reply stream-
ing from the RPC policy enforcement that is offloaded to
an in-network middlebox. Only the first packet of an multi-
packet R2P2 request goes through the policy enforcer, thus
reducing the IO bottleneck at the policy enforcing middlebox.
Single packet requests first go through the middlebox and
then to the destination server without an extra RTT. Given
that R2P2 exposes the RPC semantics to the network, policy
enforcement can be implemented in a programmable switch,
thus eliminating the latency overhead and enabling line-rate
processing speeds.
R2P2 optionally implements a tightly-coupled commu-

nication scheme between the RPC servers and the policy
enforcing middlebox through the use of FEEDBACKmessages.
Servers send those messages to the middlebox after execut-
ing each RPC and middlebox interprets and uses those mes-
sages based on the policy it implements. For example, R2P2’s
request router used those messages to implement a novel
scheduling policy called Join-Bounded-Shortest-Queue [21].
FEEBACK messages are completely application-agnostic and
the R2P2 stack sends those automatically without the appli-
cation intervention.

Figure 1 describes the packet exchange for a multi-packet
request and a multi-packet reply on top of R2P2 with a
generic policy enforcing middlebox. Only the first packet of
the request (REQ0) goes through themiddlebox, while request
and reply streams bypass it (REQN and REPLY). Step 6 depicts
the FEEDBACK message from the server to the middlebox.
Based on the above description we conclude that R2P2’s

design for in-network policy enforcement is an ideal basis
for out proposed tail-tolerant mechanism. Our goal is to use
the R2P2 infrastructure and implement SVEN as an R2P2
in-network enforced policy.

3 DESIGN
SVEN is a system designed to reduce the latency SLO vio-
lations for RPC services that run inside the datacenter by

APNet ’20, August 3–4, 2020, Seoul, Republic of Korea M. Kogias and E. Bugnion

Ingress

Control Plane (Python)

get_time classify

should

drop modify

drop

sample

app-specific scheduling logic

find

tx

time

store

time

compute

latency

match

hist
drop

set_drop_rate set_sampling cfg_histogram read_cntrs

req

feedback

no

yes

yes

no REQ0

MSG_DROP

Figure 2: SVEN’s dataplane sample implementation running in Tofino’s ingress pipeline.

proactively controlling the incoming load based on an esti-
mation of the current end-to-end latency distribution of the
RPC service. Reducing the offered load will reduce queueing
and as a result the end-to-end request latency.

We set the following requirements while designing SVEN:
i) our solution should be application-agnostic and it should
work for different service time distributions without need for
re-configuration; ii) it should be independent of and comple-
mentary to any scheduling mechanism or policy both at the
leaf or the aggregator nodes in a fan-out/fan-in application;
iii) it should be implementable on programmable network
devices, e.g., P4 switches, to avoid adding any CPU overhead
to the RPC servers or latency to the end-to-end result.
We design SVEN as an R2P2 middlebox (Figure 1) that

can do SLO-aware RPC admission control for several servers.
R2P2 [21] revealed the benefits of implementing an in-network
RPC scheduling policy that come from the global view of the
infrastructure. We place SVEN before the scheduling logic
on the same middlebox so that the scheduler deals only with
the requests to be executed and not with the ones that got
rejected due to admission control. We split SVEN’s function-
ality between a control and a dataplane.

3.1 SVEN Dataplane
SVEN’s dataplane deals with the REQ0 packets from the
clients and the FEEDBACK messages from the servers. It is
in charge of dropping incoming requests based on a drop
rate defined by the control plane, and it also needs to mea-
sure RPC latencies so that the control plane can estimate the
current RPC latency distribution.
The dataplane probabilistically decides whether to for-

ward REQ0 to one of the servers, or drop it, based on the drop
rate set by the control plane. In case of a drop, the dataplane
sends a DROP_MSG back to the client to avoid request time-
outs. This way the client early on knows that the request
will not be executed and it should not wait for it.

Incoming requests can be dropped uniformly or there can
be different drop rates for different request types. If there are
different request types, the control plane can set different
drop rates per type. R2P2’s header defines a message type
field, as well as a policy field, that can be used to encode
different request types in an application-agnostic manner,
so that the control plane can apply the equivalent drop rate.
Based on this mechanism each application can set different
priorities for its requests corresponding to different drop
rates. Also, this way an application can define requests that
should not be dropped, e.g., non read-only requests, acknowl-
edging the risk of violating the latency SLO, though.

For the latency estimation, SVEN’s dataplane takes times-
tamps when receiving REQ0s from clients, and FEEDBACKs
from servers that signal a request completion. The differ-
ence between the FEEDBACK and the REQ0 timestamps for
the same request can be used as a proxy for the latency per-
ceived by the RPC client. SVEN keeps the up-to-date latency
distribution in the programmable switch dataplane through
a histogram implemented as counters to a match-action ta-
ble whose cells correspond to the latency histogram buckets.
The dataplane can maintain different latency histograms for
different request types. In the simplest case, SVEN needs
one table, assuming one request type, and two buckets, for
requests under and above the SLO.

There are different ways to match the REQ0 and FEEDBACK
timestamps to get the latency of a specific request. One ap-
proach is to add the REQ0 timestamp in the REQ0 packet itself
and require the R2P2 stack to echo the timestamp back with
the FEEDBACK message, similarly to TCP’s timestamp option
used for RTT estimation. The alternative is to keep the REQ0
timestamp in the dataplane indexed with R2P2’s 3-way tu-
ple of (src_ip, src_port, req_id) and include the same
tuple in the FEEDBACK message to do the matching. In
our implementation we used the latter approach, because it
required fewer changes to the R2P2 code base.

Tail-tolerance as a Systems Principle not a Metric APNet ’20, August 3–4, 2020, Seoul, Republic of Korea

The current design assumes that servers send a FEEDBACK
message for each request. However, this number can be re-
duced if it affects the server scalability. The middlebox may
sample the timestamped RPCs using a specific request type,
e.g., timestamped request, so that the server only sends back
a FEEDBACK message for certain requests.
Figure 2 describes the dataplane processing processing

pipeline and its interactions with the control plane. Once a
packet arrives, the dataplane first take a timestamp to avoid
measuring any time spent in the middlebox. Then, there are
different paths based on the packet type (REQ0 or FEEDBACK).
In the case of REQ0, SVEN is completely independent and
runs before the application specific scheduling logic, e.g.,
JBSQ or random server selection.

3.2 Control plane
SVEN’s control plane runs a control loop that computes the
RPC drop rate to be applied based on the current latency dis-
tribution. The only configuration parameter for this control
loop is the target latency SLO at a specific latency percentile,
e.g., 300µs at the 99-th percentile. The input to the control
loop is the current estimation for the latency at the current
latency percentile, coming from the dataplane. The output
of the control loop is the drop-rate that the middlebox needs
to apply to the incoming requests in order to reduce latency
violations.

There are different ways to design this control plane, such
as simple heuristics, control theory, or even online learn-
ing. The design and implementation of this control plane is
orthogonal to the design of SVEN. In our proof-of-concept
implementation we used a simple additive-increase-additive-
decrease control over an exponentially weighted average es-
timation of the target-percentile latency. Listing 1 describes
the control loop logic and the dataplane-control plane inter-
action. We acknowledge that this is not an optimal control
plane design and it makes many sweeping simplifications,
such as ignoring hysterisis, but its sole purpose is to show-
case the usability of our design.

3.3 Client and server applications
SVEN is completely transparent to the client and server ap-
plications as it is implemented entirely in the transport pro-
tocol. SVEN depends on the clients’ ability to deal with re-
quest rejections and request classification for different drop
rates. R2P2’s API already requires clients to define an er-
ror callaback function that deals with early rejections. Also,
R2P2’s API allows clients to define different request poli-
cies. Those policies can be used to apply different request
rates or mark requests as non-droppable if they are criti-
cal. The above classification is non-SVEN specific, it can be

used by other policy enforcing mechanisms, and it is already
supported by the existing R2P2 API.
SVEN’s proactive drop mechanism guarantees that re-

quests reaching the server will be executed, thus avoiding
the need for an application-specific cancellation mechanism
as in Zeta [15]. From the server perspective the transmission
of FEEDBACKmessages are internal to the R2P2 stack and the
application should not take special care.

STEP = 0 . 0 1
SLEEP_INTERVAL = 20 # i n m i l l i s e c o n d s
dr = 0 # drop r a t e
TARGET_P = 99 # p e r c e n t i l e
while True :

c n t r = d a t a p l a n e . r eadCoun te r s ()
E s t ima t e p e r c e n t i l e @ t a r g e t SLO
p = e s t ima t e _p (c n t r)
e . g . b e l ow 99% f o r SLO@99− t h
i f p < TARGET_P :

dr = min (0 . 9 9 , dr + STEP)
e l se

dr = max (0 , dr − STEP)
d a t a p l a n e . a pp l y _d r op_ r a t e (dr)
s l e e p (SLEEP_INTERVAL)

Listing 1: SVEN’s proof-of-concept control loop logic

4 EVALUATION
To evaluate the effectiveness of SVEN in transforming a
generic low latency RPC service to a tail-tolerant system we
implemented the above design on a Tofino [1] programmable
switch, splitting the functionality between the P4 dataplane
and a Python control plane. We run a series of synthetic
microbenchmarks in which we control the service time dis-
tribution to investigate how SVEN performs across service
times without application-specific configurations.

We used the open-source DPDK-based version of R2P2 [5],
modified it as described in Section 3, and deployed it on a
16-core Xeon E5-2650 server connected with an Intel x520
10GbE NIC. Each core exposes its own Tx and Rx queues for
a total of 16 independent workers. We ran the middlebox that
implements the dataplane described in Figure 2 in a Barefoot
Tofino v1 Edgecore Wedge100BF-32X.

In our experiments we use three different service time
distributions with the same average service time of S̄ = 10µs:
a fixed, an exponential, and a bimodal distribution in which
10% of the requests are 10 times slower than the rest, similar
to the evaluation performed in R2P2 [21]. We consider an
SLO at 300 µs for the 99-th percentile latency, and we use
a random FIFO scheduling policy, meaning that incoming
requests are randomly assigned to queues by the switch and
are executed in order by each core. The scheduling policy
is implemented by the app-specific scheduling logic of the

APNet ’20, August 3–4, 2020, Seoul, Republic of Korea M. Kogias and E. Bugnion

middlebox in Figure 2 and it is orthogonal to the SVEN design.
We chose this policy for simplicity. On the client side we use
the Lancet [20] load generator.
In our first experiment we run the server without SVEN

to understand the system behaviour across different loads
and identify the load level that will violate the latency SLO
for each service time distribution. Figure 3 shows the 99-th
percentile latency as a function of the achieved throughput
for the three service time distributions. We also plot the 99-th
percentile latency SLO at 300 µs in red, and the throughput
that violates the SLO in dashed grey. We observe that dif-
ferent service time distributions violate the SLO at different
load levels: 1.54 MRPS for fixed, 1.39 MRPS for exponential,
and 1.22 MRPS for bimodal. SVEN’s purpose is to keep the
offered throughput below those levels.
In the second experiment, we evaluate how SVEN per-

forms as the offered request load changes. We change the
offered load every 20 seconds starting from 1 MRPS up to 1.8
MRPS which is beyond the system capacity. Note that the
system capacity is 1.6 MRPS — 16 cores and average service
time of S̄ = 10µs. We measure the achieved throughput and
latency every second and plot the results in Figure 4.
In the throughput plots we include the offered load, the

achieved throughput, the system capacity, and the through-
put that violates the SLO as identified in the previous exper-
iment. The difference between the orange (offered load) and
blue (achieved throughput) lines correspond to the drop rate
as identified by the control plane. We observe that SVEN
manages to approximately identify the load that will vio-
late the latency SLO (light grey line) for each distribution
and maintain throughput (blue line) close to that threshold
even when the offered load was much higher and despite the
simplicity of the control loop. We, also, see that SVEN does
not waste throughput to achieve tail-tolerance. When SVEN
drops requests the achieved throughput stays close to the
throughput that violates the SLO.

The latency plots, in the same figure, show the 99-th per-
centile latency as a function of time and the latency SLO
of 300µs for the same experiment. We observe that the tail
latency stays close to the target SLO, even when the offered
load is above the system capacity (when the orange line is
above the dark grey line in the throughput graphs). In such
cases of extremely high loads beyond capacity, latency would
be arbitrarily high without SVEN.
The latency oscillation is explained by the AIAD control

policy that requires a latency violation to control the drop
rate. Note that different service times lead to different oscil-
lations. This is explained by the slope of the latency versus
throughput curve at the point of the SLO violation. A drop
rate misconfiguration can lead to a more significant SLO
violation in the case of the fixed service time distribution
where the slope is steeper compared to the bimodal case. We

expect that a more robust and carefully tuned control loop
will reduce the observed latency oscillation.

5 DISCUSSION AND FUTUREWORK

Layering and Placement: The current SVEN implementa-
tion runs in the network on P4 switches, already used for RPC
scheduling in R2P2, is placed before the scheduling logic, and
servers multiple servers. However, our design is not limited
to programmable switches. An alternative would be to imple-
ment SVEN’s control and dataplane within servers. Such a
deployment assumes the server is able to accurately estimate
the time a request spends waiting and being processed. This
would require the server to timestamp the first packet of a
request once it enters the system before any queueing time
and the last last reply packet. To do so, servers should depend
either on hardware timestamping at the NIC or on an asym-
metric design with a dispatcher, similar to RamCloud [26]
or Shinjuku [17]. Note though, that this approach uses CPU
resources that could be used for RPC serving. To avoid CPU
usage, SVEN could also run on a smartNIC on the serverside.
The smartNIC has full visibility to incoming requests and
outgoing replies and can easily estimate the time a request
spends on the server by tracking the request reception and
the reply transmission time. A server-based SVEN should
not be combined with an in-network scheduler though, since
the scheduler would waste resources to schedule requests
that are eventually dropped at the server.
SVEN, being an in-network solution, poses an interest-

ing deployment question regarding its placement inside a
complex RPC service. In our evaluation we only looked at
a single-level application and placed SVEN before the RPC
server. However, in a more complicated fan-out/fan-in ap-
plication SVEN can be employed both for the leaf and the
aggregator nodes. Although it depends on the application
type and whether it can leverage the latency vs completeness
trade-off, we suggest employing tail-tolerant mechanisms
at the higher levels of the application, e.g., the aggregator
nodes, letting other mechanisms, e.g., scheduling to deal with
the leaf nodes. This way SVEN can better capture the user
perceived latency, as opposed to the latency of a leaf service.

Control plane: SVEN currently depends on a very simplis-
tic control plane and it treats equally all requests. As future
work we would like to look at different alternatives for the
control loop design and investigate their impact on latency
oscillation. Also, future control loops should consider dif-
ferent request types and compute different drop rates for
each request type, as those are defined by the R2P2 request
type or policy. The control loop can depend on either more
complicated heuristics [30], control theory [27], or online
learning [11]. Given the separation between the control and

Tail-tolerance as a Systems Principle not a Metric APNet ’20, August 3–4, 2020, Seoul, Republic of Korea

0.00 0.25 0.50 0.75 1.00 1.25 1.50

Throughput (MRPS)

0

250

500

µ
s

(a) Fixed

0.0 0.5 1.0 1.5

Throughput (MRPS)

0

250

500

(b) Exponential

0.0 0.5 1.0 1.5

Throughput (MRPS)

0

250

500

(c) Bimodal

Figure 3: 99-th Latency for different service time distributions with S̄ = 10µs without SVEN. The red line shows
the latency SLO@300µs. The vertical grey line shows the throughput that violates that SLO and it is shown with
the same colour in Figure 4.

Offered Load Achieved Throughput System Capacity Throughput@SLO

0 25 50 75 100 125 150 175

Time (sec)

1.0

1.5

M
R

P
S

0 25 50 75 100 125 150 175

Time (sec)

1.0

1.5

0 25 50 75 100 125 150 175

Time (sec)

1.0

1.5

0 50 100 150

Time (sec)

0

500

1000

µ
s

0 50 100 150

Time (sec)

0

500

1000

0 50 100 150

Time (sec)

0

500

1000

Figure 4: Throughput (MRPS) and 99-th Latency (µs) over time for a step load pattern and the same 3 service time
distributions. The difference between the orange and the blue throughput lines corresponds to SVEN’s drop rate.
The red line shows the latency SLO@300µs.

the dataplane and the fact that the control loop only iden-
tifies the drop rate, thus not being on the critical path, the
duration of the control loop could be in the order of 100s of
µs. This can open up the design and implementation space
for more accurate but slower implementations.

Dropped vs degraded requests: In our experiments we as-
sumed that clients can leverage the latency vs completeness
trade-off and did not re-issue the dropped requests. However,
this will not always be the case. Depending on the deploy-
ment clients can have different options. First, we described
that clients could prioritize requests or mark them as non-
droppable based on existing R2P2 mechanisms. Also, in case
of a replicated service clients can re-issue a dropped request
to another server. The early rejection notification enables a
more informed and less wasteful version of tied requests [6].

SVEN depends on explicit request drops to control latency
in order to eliminate the need for server modification. An-
other approach that requires server support and cooperation,
though, is one that marks requests as degraded instead of
dropping them completely. So, as tail latency approaches the
SLO SVEN changes the request type to degraded-request

before forwarding them to the server based on the same
probabilistic logic. A server would provide a reply of less
quality back to the client, e.g., an image with lower resolu-
tion, for a degraded request. Similar ideas have already been
explored in previous works [10], and in different domains,
e.g., in the NDP congestion control scheme [13] that forwards
only packet headers and drops the packet payload instead of
dropping the entire packet.

Stricter Guarantees: SVEN is only the first step towards
tail-tolerant systems and does not provide any strong guar-
antees at the moment, while it depends on the assumption
that requests can be dropped. We believe that providing
stronger tail-tolerance guarantees is viable but will require
more complicated application analysis, such as such perfor-
mance contracts [16]. Also, avoiding dropped or degraded
requests can be achieved through redundancy similar to fault-
tolerance. Combining performance verification, redundancy,
and in-network control loops on top of the right abstractions
can lead to by construction tail-tolerant systems.

APNet ’20, August 3–4, 2020, Seoul, Republic of Korea M. Kogias and E. Bugnion

6 RELATEDWORK
The idea of dynamic admission control has been explored
in different contexts [7, 32–34]. These approaches were ei-
ther application specific or targeting different deployment
environments. SVEN is a transport layer mechanism, thus ap-
plication agnostic, and can provide guarantees in µs-scale for
datacenter applications based on in-network programmabil-
ity. In the storage domain, Reflex [18] controls application la-
tency through achieved throughput, while Mittos [14] lever-
ages early rejections for fast request re-issue. NeBula [31]
implements dynamic RPC admission control in hardware.
Prior work that is closest to SVEN is our previously proposed
SLO-aware flow control for TCP [19]. SVEN does not use
complex queueing formulas to identify the right rate and
depends on a better-fitted request abstraction.

7 CONCLUSION
We advocate for tail-tolerance as a system design princi-
ple instead of a best-effort system metric. As a first step in
this direction, we propose SVEN, an application-agnostic
system for in-network SLO-aware RPC admission control
implemented as part of the R2P2 transport protocol.

REFERENCES
[1] Barefoot Networks. 2018. Tofino Product Brief. https://

barefootnetworks.com/products/brief-tofino/. (2018).
[2] Luiz André Barroso, Mike Marty, David A. Patterson, and

Parthasarathy Ranganathan. 2017. Attack of the killer microseconds.
Commun. ACM 60, 4 (2017), 48–54.

[3] Adam Belay, George Prekas, Mia Primorac, Ana Klimovic, Samuel
Grossman, Christos Kozyrakis, and Edouard Bugnion. 2017. The IX
Operating System: Combining Low Latency, High Throughput, and
Efficiency in a Protected Dataplane. ACM Trans. Comput. Syst. 34, 4
(2017), 11:1–11:39.

[4] Navin Budhiraja and Keith Marzullo. 1992. Highly-Available Services
Using the Primary-Backup Approach.. InWorkshop on the Management
of Replicated Data. 47–50.

[5] DCSL. 2020. R2P2 Github repository. https://github.com/epfl-dcsl/r2p2.
(2020).

[6] Jeffrey Dean and Luiz André Barroso. 2013. The tail at scale. Commun.
ACM 56, 2 (2013), 74–80.

[7] Peter Druschel and Gaurav Banga. 1996. Lazy Receiver Processing
(LRP): A Network Subsystem Architecture for Server Systems.. In
Proceedings of the 2nd Symposium on Operating System Design and
Implementation (OSDI). 261–275.

[8] Kenneth J. Duda and David R. Cheriton. 1999. Borrowed-virtual-time
(BVT) scheduling: supporting latency-sensitive threads in a general-
purpose schedular.. In Proceedings of the 17th ACM Symposium on
Operating Systems Principles (SOSP). 261–276.

[9] Armando Fox and Eric A. Brewer. 1999. Harvest, Yield and Scalable
Tolerant Systems.. In Proceedings of The 7th Workshop on Hot Topics in
Operating Systems (HotOS-VII). 174–178.

[10] Armando Fox, Steven D. Gribble, Yatin Chawathe, Eric A. Brewer,
and Paul Gauthier. 1997. Cluster-Based Scalable Network Services.. In
Proceedings of the 16th ACM Symposium on Operating Systems Principles
(SOSP). 78–91.

[11] Robert Glaubius, Terry Tidwell, Christopher D. Gill, and William D.
Smart. 2010. Real-Time Scheduling via Reinforcement Learning.. In
Proceedings of the 26th Conference on Uncertainty in Artificial Intelli-
gence (UAI). 201–209.

[12] Jim Gray. 1985. Fault Tolerance in Tandem Systems.. In Proceedings
of the 1985 International Workshop on High-Performance Transaction
Systems (HTPS).

[13] Mark Handley, Costin Raiciu, Alexandru Agache, Andrei Voinescu,
Andrew W. Moore, Gianni Antichi, and Marcin Wójcik. 2017. Re-
architecting datacenter networks and stacks for low latency and high
performance.. In Proceedings of the ACM SIGCOMM 2017 Conference.
29–42.

[14] MingzheHao, Huaicheng Li, Michael Hao Tong, Chrisma Pakha, Riza O.
Suminto, Cesar A. Stuardo, Andrew A. Chien, and Haryadi S. Gu-
nawi. 2017. MittOS: Supporting Millisecond Tail Tolerance with Fast
Rejecting SLO-Aware OS Interface.. In Proceedings of the 26th ACM
Symposium on Operating Systems Principles (SOSP). 168–183.

[15] Yuxiong He, Sameh Elnikety, James R. Larus, and Chenyu Yan. 2012.
Zeta: scheduling interactive services with partial execution.. In Pro-
ceedings of the 2012 ACM Symposium on Cloud Computing (SOCC).
12.

[16] Rishabh R. Iyer, Luis Pedrosa, Arseniy Zaostrovnykh, Solal Pirelli,
Katerina J. Argyraki, and George Candea. 2019. Performance Contracts
for Software Network Functions.. In Proceedings of the 16th Symposium
on Networked Systems Design and Implementation (NSDI). 517–530.

[17] Kostis Kaffes, Timothy Chong, Jack Tigar Humphries, Adam Belay,
David Mazières, and Christos Kozyrakis. 2019. Shinjuku: Preemptive
Scheduling for µsecond-scale Tail Latency.. In Proceedings of the 16th
Symposium on Networked Systems Design and Implementation (NSDI).
345–360.

[18] Ana Klimovic, Heiner Litz, and Christos Kozyrakis. 2017. ReFlex:
Remote Flash ≈ Local Flash.. In Proceedings of the 22nd International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS-XXII). 345–359.

[19] Marios Kogias and Edouard Bugnion. 2018. Flow control for Latency-
Critical RPCs.. In Proceedings of the 2018 Workshop on Kernel-Bypass
Networks (KBNETS@SIGCOMM). 15–21.

[20] Marios Kogias, Stephen Mallon, and Edouard Bugnion. 2019. Lancet:
A self-correcting Latency Measuring Tool.. In Proceedings of the 2019
USENIX Annual Technical Conference (ATC). 881–896.

[21] Marios Kogias, George Prekas, Adrien Ghosn, Jonas Fietz, and Edouard
Bugnion. 2019. R2P2: Making RPCs first-class datacenter citizens.. In
Proceedings of the 2019 USENIX Annual Technical Conference (ATC).
863–880.

[22] Leslie Lamport. 1998. The Part-Time Parliament. ACM Trans. Comput.
Syst. 16, 2 (1998), 133–169.

[23] Behnam Montazeri, Yilong Li, Mohammad Alizadeh, and John K.
Ousterhout. 2018. Homa: a receiver-driven low-latency transport pro-
tocol using network priorities.. In Proceedings of the ACM SIGCOMM
2018 Conference. 221–235.

[24] Diego Ongaro and John K. Ousterhout. 2014. In Search of an Under-
standable Consensus Algorithm.. In Proceedings of the 2014 USENIX
Annual Technical Conference (ATC). 305–319.

[25] Amy Ousterhout, Joshua Fried, Jonathan Behrens, Adam Belay, and
Hari Balakrishnan. 2019. Shenango: Achieving High CPU Efficiency
for Latency-sensitive Datacenter Workloads.. In Proceedings of the 16th
Symposium on Networked Systems Design and Implementation (NSDI).
361–378.

[26] John K. Ousterhout, Arjun Gopalan, Ashish Gupta, Ankita Kejriwal,
Collin Lee, BehnamMontazeri, Diego Ongaro, Seo Jin Park, Henry Qin,
Mendel Rosenblum, Stephen M. Rumble, Ryan Stutsman, and Stephen
Yang. 2015. The RAMCloud Storage System. ACM Trans. Comput. Syst.

https://barefootnetworks.com/products/brief-tofino/
https://barefootnetworks.com/products/brief-tofino/
https://github.com/epfl-dcsl/r2p2

Tail-tolerance as a Systems Principle not a Metric APNet ’20, August 3–4, 2020, Seoul, Republic of Korea

33, 3 (2015), 7:1–7:55.
[27] Sujay S. Parekh, Neha Gandhi, Joseph L. Hellerstein, Dawn M. Tilbury,

T. S. Jayram, and Joseph P. Bigus. 2001. Using Control Theory to
Achieve Service Level Objectives In Performance Management.. In
Integrated Network Management. 841–854.

[28] Simon Peter, Jialin Li, Irene Zhang, Dan R. K. Ports, DougWoos, Arvind
Krishnamurthy, Thomas E. Anderson, and Timothy Roscoe. 2016. Ar-
rakis: The Operating System Is the Control Plane. ACM Trans. Comput.
Syst. 33, 4 (2016), 11:1–11:30.

[29] George Prekas, Marios Kogias, and Edouard Bugnion. 2017. ZygOS:
Achieving Low Tail Latency for Microsecond-scale Networked Tasks..
In Proceedings of the 26th ACM Symposium on Operating Systems Prin-
ciples (SOSP). 325–341.

[30] George Prekas, Mia Primorac, Adam Belay, Christos Kozyrakis, and
Edouard Bugnion. 2015. Energy proportionality and workload con-
solidation for latency-critical applications.. In Proceedings of the 2015
ACM Symposium on Cloud Computing (SOCC). 342–355.

[31] Mark Sutherland, Siddharth Gupta, Babak Falsafi, Virendra Marathe,
Dionisios Pnevmatikatos, and Alexandros Daglis. 2020. The NeBuLa
RPC-Optimized Architecture. [Proceedings of ISCA 2020] (2020), 14.
http://infoscience.epfl.ch/record/277391

[32] Thiemo Voigt, Renu Tewari, Douglas Freimuth, and Ashish Mehra.
2001. Kernel Mechanisms for Service Differentiation in Overloaded
Web Servers.. In USENIX Annual Technical Conference. 189–202.

[33] Matt Welsh and David E. Culler. 2002. Overload management as
a fundamental service design primitive.. In ACM SIGOPS European
Workshop. 63–69.

[34] Matt Welsh and David E. Culler. 2003. Adaptive Overload Control for
Busy Internet Servers.. In USENIX Symposium on Internet Technologies
and Systems.

[35] Christo Wilson, Hitesh Ballani, Thomas Karagiannis, and Antony I. T.
Rowstron. 2011. Better never than late: meeting deadlines in datacenter
networks.. In Proceedings of the ACM SIGCOMM 2011 Conference. 50–
61.

http://infoscience.epfl.ch/record/277391

	Abstract
	1 Introduction
	2 Motivation and Background
	2.1 Scheduling and Flow Control
	2.2 Datacenter RPCs
	2.3 R2P2

	3 Design
	3.1 SVEN Dataplane
	3.2 Control plane
	3.3 Client and server applications

	4 Evaluation
	5 Discussion and Future Work
	6 Related Work
	7 Conclusion
	References

