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ABSTRACT

Although eBPF (Extended Berkeley Packet Filter) started as a virtu-
alization technology used in the Linux kernel to allow for executing
user code inside the kernel in a safe wayj, it is a general purpose
software fault isolation technology. The specification of eBPF in-
struction set is, also, suitable for using it as a VM for low-end
network-enabled embedded devices to achieve software isolation,
compartmentalization and allow for updating deployed firmware
over-the-air. Existing solutions for running eBPF programs on mi-
crocontrollers use bytecode interpreters which incurs execution
time and code size overhead compared to native code execution.
Additionally, they don’t support data relocations which limits the
space of programs that can be executed. We implement uBPF - an
eBPF virtual machine and a JIT compiler targeting ARMv7-eM ar-
chitecture. uBPF is compatible with embedded operating systems
capable of supporting SUIT firmware update protocol. We imple-
ment a secure program deployment pipeline for RIOT - an operating
system commonly used in embedded IoT applications. Our evalua-
tion shows that uBPF JIT achieves close-to-native performance and
up to of 50% code size reduction compared to the eBPF binaries.
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1 INTRODUCTION

Extended Berkeley Packet Filter (eBPF [2]) is a virtualization tech-
nology originating from the Linux kernel. It allows for augmenting
the behaviour of the kernel by compiling short programs written
in a subset of C (or any other compatible eBPF front-end) into eBPF
bytecode and then loading it into a predefined set of points (hooks)
scattered throughout the kernel. The programs are then executed
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in an isolated virtual machine (VM) environment when a specific
event takes place (e.g. a system call is executed). To ensure that
malicious code does not compromise the kernel, each program is
passed through a verifier before being loaded.

Despite its origins, though, eBPF can be viewed as a generic com-
partmentalization technology applicable to different settings rang-
ing from datacenter servers to resource-constrained IoT devices.
In any compartmentalized environment, a system or an applica-
tion is split into isolated components (compartments) that interact
with each other over safe communication channels. This allows for
achieving fault isolation where a malfunction in one compartment
does not propagate to the rest of the system.

Such compartmentalization mechanisms are becoming more im-
portant in the context of networked-enabled embedded devices,
whose number increases rapidly [18]. As those devices become
increasingly connected, the attack surface grows. To isolate faults
caused by potential attackers, a secure mechanism for compartmen-
talized execution of programs is needed. It is a challenging problem
to solve given the limited hardware resources, various instruction
set architectures (ISA) used by the microcontrollers, and in many
cases the lack of virtual memory.

Existing solutions to this problem either involve proposing novel
instruction set architectures, such as CHERIoT [5], or running VM
environments on embedded hardware [8, 13, 17]. A good candidate
for such a VM environment is eBPF, since its compile-verify-execute
workflow translates well into this problem domain. Among other
VM solutions (e.g. WASM [14], or JavaScript [13]), eBPF is particu-
larly suitable for resource constrained hardware because its ISA is
simple and supports verification. The simplicity of the ISA means
that the RAM and ROM requirements of an eBPF VM are much
smaller compared to the alternatives. Support for verification al-
lows for ensuring that the executed programs are safe directly on
the target device. Femto-Containers [22] - the current state-of-the-
art, explores the idea of a lightweight container-like virtualization
mechanism for IoT devices based on eBPF.

Prior work suffers from the following limitations of using eBPF
as a virtualization solution on microcontrollers. i) Execution time
overhead is high. Existing solutions use an eBPF bytecode inter-
preter. This is an order of magnitude slower than native C and as
shown in [17] two times slower than using a WASM3 interpreter.
ii) The eBPF program size is larger than native code. eBPF ISA is a
64-bit fixed-size instruction set. This means that most instructions
have unutilised fields (always set to 0), which results in bytecode
relatively larger compared to alternatives. iii) Compatibility is lim-
ited. Existing solutions do not support all valid eBPF programs. For
example, programs containing data relocations [17] or read-only
data [19] are not supported. iv) Verification capabilities are also,
limited. Verifiers used by the available eBPF VM implementations
are simple and do not support restricting access to eBPF helper
functions.
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In this work we introduce uBPF to tackle those limitations and
bring software updatability similar to the desktop-grade solutions
such as Docker to the embedded systems space [8]. uBPF is a VM,
JIT compiler, and a deployment framework for compartmentalized
code execution on microcontrollers. We design uBPF on top of
RIOT [9] - a widely used real-time operating system for embedded
devices, and implement it in Rust. Our evaluation shows that code
emitted by uBPF JIT achieves close-to-native performance and up
of 50% program size reduction compared to eBPF binaries.

The key contributions in this work are:

e We implement an eBPF-to-ARMv7 JIT compiler compatible
with devices running ARM Cortex M CPUs.

e We design a mechanism for restricting eBPF program access
to helper functions provided by the host OS.

e We build a toolkit for compilation and deployment of eBPF
programs for microcontrollers running RIOT.

2 BACKGROUND & RELATED WORK

eBPF Bytecode. The eBPF VM executes programs represented
by eBPF bytecode instructions. This bytecode is generated by com-
piling a restricted version of C (or other eBPF front-ends for e.g.
Python [16]) into the eBPF bytecode. To ensure that eBPF programs
can be executed safely inside the kernel, the expressiveness of the
instruction set is limited. This allows for verification using static
analysis. In particular, eBPF does not allow for indirect branch or
jump instructions. Each jump instruction has a specified offset rel-
ative to the program counter that is known before runtime. This
limitation ensures that the sandboxed execution does not jump out
of the program loaded into the VM.

The eBPF ISA specifies a fixed-size stack of 512 B and its spec-
ification does not include a dynamically allocated heap. This is
desirable on embedded devices with memory size constraints.

eBPF for Isolation. eBPF allows for implementing isolation
at various levels within the Linux kernel. By running eBPF pro-
grams in a sandboxed environment, the kernel ensures that these
programs can perform their tasks without compromising system
security. Examples of applications include isolating network traf-
fic, containerized applications, or system resources. Related work
- Femto-Containers [22] uses eBPF in a similar way on embedded
devices by allowing to host multiple software functions on a single
microcontroller. It provides proper isolation, secure deployment
and hardware abstraction for the hosted functions.

eBPF for Microcontrollers. The above specification of eBPF
means that it can be used on devices where memory is heavily
constrained. By contrast, WASM3 requires at least 64KiB of RAM
[14], but can be twice as fast [22]. An eBPF VM can be relatively
simple, Femto-Containers VM uses approximately 500 lines of C
code. This results in a smaller ROM footprint compared to using
script interpreters (rBPF - 5 KiB vs Micropython - 100 KiB [17]).

These memory requirements need to be evaluated in the con-
text of the target hardware. Among microcontrollers supported by
RIOT [9], their memory budgets range from 2 KiB RAM / 32 KiB
ROM (Arduino Uno) to 256 KiB RAM / 2 MiB ROM (STM32F4) [9].
This means that high memory requirements of a virtual machine
can reduce its compatibility.
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Unfortunately, the compatibility of existing eBPF VM solutions
for microcontrollers is lacking. Femto-Containers [22] VM, uses
a custom binary format with a header specifying the section off-
sets within the program binary. This design couples the interpreter
implementation with the binary format limiting compatibility. Con-
sequently, eBPF object files need to be passed through a custom
bytecode patching script to make them compatible with the VM.
Additionally, the VM implementation does not support data reloca-
tions or program-counter-relative function calls which are included
in the eBPF specification.

Real-Time Operating Systems (RTOS). Although related work
[11] considers a model where embedded devices run a Linux kernel
and use its eBPF subsystem, we target microcontrollers running a
lightweight real-time operating system such as RIOT [9]. Real-time
operating systems need to guarantee that the time to complete a
given operation is bounded and can be reasoned about. RIOT pro-
vides soft real-time guarantees by using priority-based scheduling
and maintaining interrupt latency at approximately 50 cycles [4].

It is important to note that existing solutions for running eBPF
code in RIOT [17, 22] provide no real-time guarantees because of
the VM interpreter overhead .

SUIT Firmware Update Protocol. Software Updates for Inter-
net of Things [23] defines a unified update format for IoT devices.
Performing updates of networked embedded devices is difficult be-
cause of a wide range of network protocols in use. Furthermore, the
devices originate from diverse vendors often with vendor-specific
update management systems. SUIT defines core operations that
a particular update mechanism should provide (e.g. verify device
identity, verify updated image, fetch the image). In RIOT [9] the
SUIT update workflow involves generating a manifest file specify-
ing all metadata required to securely load the new firmware image.
The manifest is then signed using encryption keys matching the
ones used by the running OS.

UBPF uses RIOT’s SUIT subsystem to allow for secure deploy-
ment and updates of eBPF programs. Our deployment framework
was built around infrastructure used by the current state-of-the-art
[17] and [22].

CoAP. uBPF deployment framework uses the Constrained Appli-
cation Protocol (CoAP) [20] to communicate with the target devices.
CoAP is designed for resource-constrained nodes and networks (e.g.
low-power). Typically, the nodes are embedded devices with mem-
ory constraints, and the networks used for communication suffer
from low throughput and high packet loss rates. CoAP is based
on UDP and provides a request/response model similar to HTTP.
CoAP is widely used in IoT applications and most contemporary
RTOS implementations such as RIOT provide support for it.

Other eBPF Use Cases. rbpf [19] is a userspace eBPF VM
together with a JIT compiler for the x86 ISA. The rbpf VM is
implemented in Rust and was used as a base for uBPF. It is different
from rBPF [17] - an eBPF subsystem for RIOT on which Femto-
Containers VM implementation was based. A fork of rbpf is used
by the Solana blockchain in a smart contract execution system [15].
This version, also, provides an ARM64 JIT compiler which was a
point of reference for the ARMv7-eM JIT compiler used by uBPF.



uBPF: Using eBPF for Microcontroller Compartmentalization

3 DESIGN

Deployment Model. uBPF divides the process of deploying
eBPF programs into two steps: deployment stage and execution
stage. The first stage involves compiling (3.1.1), verifying (3.1.3)
and loading (3.1.2) the program into memory of the target device.
After that, in the execution stage, clients can send requests to run
previously-deployed programs.

3.1 Deployment Pipeline

The deployment pipeline of uBPF consists of four steps: compila-
tion, signing, firmware upload, and verification. Figure 1 shows the
pipeline. Grey boxes represent existing infrastructure, whereas the
contribution of pBPF is marked in blue.
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Figure 1: uBPF deployment pipeline.

3.1.1 Compilation and Bytecode Patching. At the start of
the pipeline, source files in C are compiled into eBPF bytecode.
After that follows an optional bytecode patching step required for
backwards compatibility with Femto-Containers. uBPF supports 4
different eBPF binary formats (see 4.1) so this step can be skipped
and a raw object file can be fed into the next step of the pipeline.

3.1.2 SUIT Firmware Update. Next step involves sending
the program binary to the target device using the SUIT update
workflow provided by RIOT. First, the produced binaries are signed
with encryption keys matching the ones stored in the OS image
running on the target device. Then, a manifest file is created and
signed. It is then stored together with the program binary in the
root directory of the CoAP fileserver [6]. The manifest provides
information required by the target device to verify that the loaded
program has not been tampered with and originates from a trusted
source. The device then fetches the compiled eBPF bytecode and
its manifest file from the CoAP fileserver, verifies the signature and
loads the program into one of the RAM storage slots provided by
the RIOT’s SUIT subsystem.

Middleware Layer. While being executed, an eBPF program
can access a set of middleware functions to interact with the under-
lying OS. These functions are equivalent to eBPF helper function
calls [7] and enable program logic to interact with embedded hard-
ware by e.g. reading data from sensors, controlling actuators or
sharing data with other programs using the shared global storage
(similar to eBPF maps). The set of available helper functions can be
extended to match application-specific requirements.
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3.1.3  Verification. Malformed programs or a malicious use of
helper functions can compromise security of the system, to solve
this uBPF can be configured to verify eBPF bytecode at one of the
three predefined points in the deployment pipeline (V1, V2, V3 in
Figure 1). The verifier implementation is based on rbpf [19]. It
checks the validity of instructions and jump offsets and verifies that
only calls to allowed helper functions are called. The VM validates
all memory accesses at runtime. In contrast to the Linux kernel
verifier[21], puBPF does not traverse all possible program paths.

We consider the following threat model:

o fully trusted source and clients - verification happens at
only V1 outside of the embedded device

e potentially malicious source - verification is done at V2
before it is loaded into the SUIT firmware storage.

¢ potentially malicious clients - after the client sends a
request, program is verified at V3 before execution.

The number of program storage slots is configured at compile
time and fixed. Because of this, programs from potentially malicious
sources are verified at V2 before being loaded into the storage to
ensure that invalid programs do not waste RAM space.

A subset of helper functions implemented for uBPF, if used incor-
rectly, can be harmful to the system. For instance, helper functions
directly accessing the GPIO pins of the device can interfere with pe-
ripherals connected to those pins. Therefore, these helpers should
be used only by programs executed by privileged, trusted clients.
In our model a malicious client might try to execute a program
accessing helpers that are available only to privileged users. Based
on client’s privilege level, uBPF encodes the list of allowed helper
functions in the execution request and the server verifies (at V3)
that the program only calls functions included in this list.

3.2 VM Execution and JIT Stage

After the deployment stage is complete, clients can begin sending
requests to start executing the loaded programs. Clients can choose
between executing the program using the VM interpreter or using
the JIT compiler and then executing the emitted native code. After
a given program is JIT-compiled, its bytecode is stored in an addi-
tional JIT program storage (see Figure 1). Upon receiving a request
to rerun the program, the compilation process can be skipped.

Here we note that when using the JIT compiler additional mem-
ory is required as the eBPF bytecode needs to be translated into the
native instructions and written into a new memory buffer. How-
ever, after this is done, the original eBPF program can be discarded
allowing to save memory.

4 IMPLEMENTATION

We implement uBPF based on rbpf [19] - a userspace eBPF VM
written in Rust. The reason for this choice was good support for
Rust in RIOT and existing JIT compiler implementations for rbpf
targeting 64-bit architectures [15]. The design of those compilers
was used to drive the implementation of the uBPF JIT compiler.

One of the key limitations of the existing solutions was the
number of manual steps involved to deploy and run eBPF programs
on target devices. We implement a suite of tools allowing to perform
the full deployment workflow with a single command.
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Middleware Implementation. We implement a middleware

layer for RIOT allowing for full compatibility with Femto-Containers.

This base functionality is extended with wrappers around drivers
for peripherals such as the HD44780 LCD display [3] or more privi-
leged operations such as GPIO pin access.

The middleware provided by uBPF allows for fine-grained con-
trol over the set of helper functions that a given program is allowed
to call. This is implemented by dynamically attaching helper func-
tions to a given instance of the pBPF VM before execution. This
flexibility however comes at a cost, as this is handled by storing
helper function pointers in a BTreeMap, with O (log n) lookup time
complexity. A standard HashMap is not available because of the lack
of the Rust standard library on the target embedded devices.

4.1 Supported Binary Formats

The space of programs supported by the existing solutions is limited.
The original version of rbpf [19] supports programs containing
only the text section extracted out of the eBPF binaries. Because
of this, programs that contain read-only data such as strings for
printing debug information are not supported. A further limitation
of Femto-Containers VM is that data relocations are not supported.
This means that programs similar to the one in Listing 1 can’t be
executed using the existing solutions.

Listing 1: Example program requiring data relocations

const int c = 123;
const int *xptr = &c;
int test_data_relocations() {

bpf_printf ("ptr value: %p\n", ptr);
bpf_printf ("address of c: %p\n", &c);
bpf_printf ("This should be c: %d\n", *xptr);

In Listing 1 the variable ptr is initialised to hold the address of
the variable c. The first two statements should print the address
of ¢, whereas the last one should print its value. However, this
address is not known at compile time. Because of this the object file
created by the compiler contains a relocation entry in that place
which should then be resolved by a relocation mechanism before
executing the program. The limitation of the Femto-Containers VM
is that it does not implement such a relocation resolution procedure.
Consequently, the value of ptr will be set to 0, and the program
won’t be executed correctly.

To overcome these limitations we design uBPF to be compatible
with the following binary formats:

e Only . text section - no support for read-only data, smallest
binaries, backwards-compatible with rbpf.

e Femto-Containers - compatible with Femto-Containers,
uses a custom header and patched bytecode.

¢ Extended header - allowed helper functions are encoded
directly in the program binary

e Raw object file - ELF files generated by LLVM without the
debug information, support data relocations.

We implement a portable library for resolving relocations and

bytecode patching. It allows for generating binaries that are backwards-

compatible with Femto-Containers or rbpf and resolving reloca-
tions directly on the target device.
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When choosing the binary format there is a trade-off between
compatibility and the program size. For instance, the raw object
file format achieves the best compatibility, as it supports data relo-
cations. However, it uses raw ELF files generated by LLVM. Even
after removing debug symbols, this format needs to contain reloca-
tion tables which incurs a program size overhead compared to the
Femto-Containers binaries.

JIT Compilation Between 64 and 32-bit ISAs. We implement
the pBPF JIT aiming to reduce the size of the program binaries.
The target architecture: ARMv7-eM runs on ARM Cortex M4 CPUs
available on off-the-shelf embedded hardware. This ISA provides
support for Thumb 16-bit and 32-bit instruction encodings [1].
The pBPF JIT compiler prioritises using shorter 16-bit instruction
encodings to reduce the size of the emitted machine code.

eBPF is a 64-bit ISA with 64-bit registers, meanwhile, ARMv7
uses 32-bit registers. In some cases this results in eBPF compiler
emitting bytecode that can’t be translated into ARM. For instance,
a logical shift left by 32 bits is a valid instruction in eBPF. Such in-
structions are emitted by the compiler e.g. before comparing 32-bit
integers. On ARMv7 however, this instruction would flush the reg-
ister, effectively setting it to zero, which is not always the expected
behaviour. The pBPF JIT compiler works around this by truncating
shift values modulo 32. It trades compatibility for performance by
only supporting 32-bit integer values and translating 64-bit vari-
ants of eBPF instructions into their 32-bit equivalents. Related work
on an eBPF-to-ARM32 JIT compiler in the Linux kernel simulates
64-bit registers on the stack [10] achieving better compatibility at
the cost of implementation complexity and runtime performance.

5 EVALUATION

5.1 Performance Analysis

In this section we evaluate performance of puBPF running on STM32-
F439ZI - a microcontroller with an ARM Cortex M4 CPU, 256 KiB
of RAM and 2 MiB of flash storage. We perform evaluation against
benchmarks used in prior work [17, 22].

We measure the program load, verification and execution time as
well as the size requirements of the program binaries. We evaluate
our VM and JIT implementation using the Fletcher 16 algorithm
[12]. It performs a number of arithmetic operations, memory ac-
cesses and branch instructions, while looping over a 640 B string to
calculate its checksum. It aims to simulate a representative work-
load of processing sensor data on a microcontroller [22].

We compare performance against three baselines: native C, Femto-
Containers [22] and rbpf [19] VMs. Results of the benchmark can
be seen in Table 1.

Load Verify Execute Total
Native C N/A N/A 114ps  114ps
Femto-Containers 61us 6us  2555ps 2623 ps
rbpf 120pus  20ps  5779ps  5921ps
uBPF VM 120ps  20ps 3860 ps 4010 ps
uUBPF JIT 1944 ps 101 ps 144 pus 2190 ps

Table 1: Fletcher 16 on 640 B string execution time.
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We find that the execution of JIT-compiled code achieves na-
tive performance. However, it comes at a load-time cost of approx.
2000 ps. Note that in our programming model, loading and verifica-
tion is performed once, during the deployment stage. Because of
this, the compilation cost is amortized over multiple executions of
the program.

Execution Time Overhead. We measure the VM overhead
compared to native execution depending on the computation size.
This is achieved by running a program calculating the Fletcher16
checksum of strings of sizes varying between 80 B and 640 B.

OoNative
5000[ [PFemto-Containers
Oorbpf
BayBPF
o I, BPF JIT
2,500
Or—\m.mﬂlﬂl

80B 160B 320B 640B
Figure 2: Fletcher16 execution time for 80 B-640 B data.

Execution time in ps of different solutions is shown in Figure 2.
We observe that pBPF is about 33% faster than the baseline rbpf ,
This was achieved after optimising the instruction parsing and run-
time memory access checks performed by rbpf. However, Femto-
Containers VM is still approx. 33% faster than uBPF. This is because
of the additional configurability with respect to the program bi-
nary format and allowed helper functions provided by pBPF which
incurs an overhead.

To simulate real-world deployment scenarios, we also benchmark
program logic used for the example application in 5.2 . The first
program - CoAP response formatter [22] is triggered upon receiving
arequest from the client to read temperature data. It reads the sensor
data and writes it into the packet buffer that is then sent back to
the client. The second program computes a moving average of the
sensor data in the global storage.

_all_

Sensor data processing

200) 5 Native
150 OFemto-Containers
OopBPF
il
2100] ™ WUBPF JIT

50
0 T
CoAP response formatter
Figure 3: Example application logic - execution time.

Here we observe that the overhead of using pBPF VM is higher
than in the previous benchmark. This is because the above pro-
grams mainly consist of helper function calls, as they interact with
the global state of the device (sensors, storage). The helper func-
tions in uBPF VM are dynamically configured, thus they need to
be maintained in a BTreeMap, which is slower than a switch state-
ment used by Femto-Containers (as in that case all helper functions
are specified during compilation). Additionally, uBPF VM has a
higher initialization overhead compared to Femto-Containers be-
cause of the larger number configuration options (e.g. specifying
the binary format). The initialization time impacts performance in
this benchmark because the programs are relatively short.
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Verification Time. We observe that when using the JIT com-
piler, the verification takes marginally longer (see Table 1). This is
because the compiler operates on raw object files, and their header
metadata takes longer to parse compared to the custom, simpli-
fied formats used by other VMs. However the total time of 100 s
negligible compared to 2000 ps it takes to perform JIT compilation.

JIT Compilation Overhead. We observed that executing the
code emitted by pBPF JIT compiler achieves performance compa-
rable to native C. However, we need to ensure that the cost of
compilation is not prohibitively expensive. Table 1 shows the load
time (including JIT compilation) for the Fletcher 16 algorithm logic.
Although the JIT load time is larger compared to the alternatives, it
is still acceptable and results in a lower total time compared to VM
interpreters. Moreover, this cost can be amortized over multiple
executions by compiling once and storing the program in the JIT
program storage.

JIT Program Size. We also consider the additional memory
required to perform JIT compilation. By design, this process requires
that we have access to two statically allocated memory buffers, one
to store the original eBPF program, and the second one to emit the
JIT-compiled code into it. Consequently, at load time we need twice
as much storage space as in the case of the VM interpreters. Once
the compilation is complete, we only need the native machine code,
and the eBPF program can be discarded allowing to save space.

We measure the program size requirement across 10 example
programs (see Figure 4) The first six programs are short scripts
performing pre-processing and calling helper functions. The sixth
one: inlined_calls defines a set of static inlined functions and
calls them in the main function, in which case we measured a
maximum of 57% program size reduction. The last three are the
benchmarked Fletcher16 algorithm and logic used by the example
application in 5.2.

We observe that in case of programs that consist of primarily of
read-only data, the transpiled program needs to contain a copy of
the data. Consequently, in such cases the program size reduction is
smaller (e.g. fletcher16 in Figure 4 - the program mainly consists
of the 640 B string stored in its . data section).

As noted above, during JIT compilation we need to have access
to both the original eBPF program buffer and the JIT-compiled one.
Referring this to Figure 4, when performing JIT compilation, the
space occupied by the two buffers is equal to the sum of the blue
and grey bars as the JIT uses the raw-object-file binary format.

1,500 DDRawELFﬁle'
OaFemto-Containers
1,250} |oo,BPF
1000| |1uBPFJIT
M
750
500
250

A 8 aC S e oS
¢ }e\ < :D\o &/&\e 26 3 \;,m/é Qg\o &/@ @06‘ Qe‘ﬁ‘ s S@%
AUSER VSN, 7 S Nl QS
55 58 * S
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Figure 4: Example program sizes across binary formats.
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JIT vs VM Single Execution Time. uBPF allows for saving JIT
compiled programs in a memory storage to be reused multiple times
thereby amortizing the cost of transpilation. To find the point at
which using the JIT is faster even for a single execution, we repeat
the previous experiment with the Fletcher16 algorithm on data sizes
varying from 80 B to 2560 B. We measure the compilation, execution
and total time, comparing it with the baseline of Femto-Containers.

-10*
1| |"™Femto-Containers Total
08JIT - Total
0.8 |00JIT - Compilation
I]IT - Execution
© 0.6
0.4
[l [ |
I =MA0 mfA0 WA0 BAR_8AM.

80B 160B  320B  640B  1280B  2560B
Figure 5: JIT vs VM for a single Fletcher16 execution.

Figure 5 shows that for small computation sizes, the JIT com-
pilation time dominates, and the total time using interpreted VM
execution is shorter. However, as the processed data size increases,
the performance discrepancy between the JIT and VM execution
grows. When the processed data size reaches 640 B, the total time
for the JIT is shorter than the one for the VM.

5.2 Example Application

We implement an example application to demonstrate how uBPF
can be used to deploy a compartmentalized system on a microcon-
troller. Figure 6 depicts the application consisting of three com-
partments: two responsible for collecting sensor data and one for
controlling an LCD display. The compartments are isolated by run-
ning in three instances of the pBPF VM on separate threads.

Storage l
m

LCD Display
Input & Update

Temperature & Humidity
Measurement

Light & Sound Intensity
Measurement

Microphone & ‘ |
Photoresistor /=

Figure 6: Example application deployed with puBPF.

Compartmentalization is achieved by allowing each of the pro-
grams to access the minimum set of helper functions required to
perform its task. Programs collecting data can only call helpers to
read sensor measurements and write them into the global storage.
The LCD display compartment is only allowed to read from the
storage, format and display the sensor data, and collect user input
from the keypad module to control the displayed user interface.

If, for instance, an error in the display module logic causes it to
crash after receiving a particular input, this fault won’t affect the
other compartments. The VM running the display program will
handle the fault and exit gracefully. A new, patched version of the
display logic can then be redeployed without interfering with the
execution of the other, already running, programs.
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6 DISCUSSION

uBPF VM Overhead. JIT-compiled programs provide a sig-
nificant performance improvement over the VM, however pBPF
VM is less performant than Femto-Containers. After optimising its
instruction parsing and memory access checks compared to the
baseline rbpf, the discrepancy still remains.

We identify three reasons for this difference: i) uBPF supports
more configuration options, resulting in a larger initialization over-
head. This is particularly evident for shorter programs (e.g. Figure 3).
ii) uBPF allows for specifying allowed helper functions by populat-
ing a BTreeMap before program execution. At runtime, looking up
helper functions from this map is slower than the hard-coded switch
statement with all supported functions used by Femto-Containers.
iii) Femto-Container VM uses a hand-written jumptable interpreter
to iterate over and simulate execution of program instructions. This
is faster than the interpreter used by pBPF based on a match state-
ment. This is because it matches on the instruction opcode values
which are non-consecutive integer values. Hence, the compiler is
not able to generate a jump table automatically.

UBPF VM trades performance for compatibility and flexibility. In
performance-critical applications, uBPF JIT should be used. We are
currently working on a less flexible implementation of the VM to
close the performance gap.

Limited JIT Compatibility. The current implementation of
the pBPF JIT compiler only suppors programs operating on 32-bit
integers. This is because of the constraints imposed by the 32-bit
target architecture of the compiler (ARMv7-eM registers are 32-
bits long). This limits compatibility of the solution. In the Linux
kernel there exists an eBPF JIT compiler implementation targeting
a 32-bit architecture, which simulates 64-bit registers on the stack
[10]. We are planning to support a similar solution in the future. An
important property to consider when evaluating possible solutions
is the runtime performance cost of simulating registers on the stack.

7 CONCLUSION

In this paper we present uBPF, an eBPF VM, JIT compiler, and a
deployment framework allowing for compartmentalizing micro-
controllers running RIOT. We demonstrate that it is possible to

2. perform JIT compilation on low-end embedded hardware. We eval-

uate the execution time and program size overhead of the solution
and compare it against native code and existing alternatives. We
demonstrate that JIT-compiled code achieves close-to-native per-
formance and decreases the size of program binaries up to 50%.
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