Towards Functional Verification of eBPF Programs

Dana Lu” Boxuan Tang"
Imperial College London Imperial College London
ABSTRACT

eBPF is being used to implement increasingly critical pieces of
system logic. eBPF’s verifier raises the cost of adoption of the tech-
nology, as making programs pass the verifier can be very effortful.
We observe that the guarantees provided by the verifier have only
been used for the narrow objective of verifying these programs’
safety, despite them also enabling the automatic verification of pro-
gram functional correctness. We envision a framework allowing
developers to easily specify and automatically verify their eBPF
programs with very little extra cost compared to simply passing
the verifier.

We showcase our implementation of DRACO, built on top of
KLEE. DRACO allows developers to fully or partially specify eBPF
programs, add verification-time assert statements, and reason about
multiple eBPF programs interacting with each other and userspace,
all at minimal additional cost to the developers. We use DRACO to
either fully or partially verify the correctness of several real-world
or experimental XDP programs.

CCS CONCEPTS

« Software and its engineering — Functionality;

KEYWORDS

Functional verification; eBPF; Symbolic execution

ACM Reference Format:

Dana Lu, Boxuan Tang, Michael Paper, and Marios Kogias. 2024. Towards
Functional Verification of eBPF Programs. In Workshop on eBPF and Kernel
Extensions (eBPF °24), August 4-8, 2024, Sydney, NSW, Australia. ACM, New
York, NY, USA, 7 pages. https://doi.org/10.1145/3672197.3673435

1 INTRODUCTION

eBPF programs are being deployed for an increasing amount and
diversity of use cases. Firewalls [1], congestion control algorithms
[14], load balancers [16] and task scheduling policies [9, 17] are
now being defined in eBPF. For all these scenarios, eBPF’s strict
verifier acts as a gatekeeper to prevent poorly written programs
from harming the kernel. Convincing the verifier of the safety of
a program is a time-consuming task, but eBPF’s success relies on
the observation that this task is not a waste of time. Rather, e BPF
enables the faster deployment of more secure and efficient systems.

However, it is important to differentiate eBPF from its verifica-
tion process. At its core, eBPF is just an ISA for a bytecode which

*These authors made equal contributions.

This work is licensed under a Creative Commons Attribution International 4.0
License.

eBPF °24, August 4-8, 2024, Sydney, NSW, Australia

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0712-4/24/08.

https://doi.org/10.1145/3672197.3673435

Michael Paper
Imperial College London

Marios Kogias
Imperial College London

could define arbitrary programs and can be used outside the kernel
context, e.g. in userspace [6] or microcontrollers [11]. eBPF’s kernel
verifier splits the eBPF programs into two broad categories: those
that it considers safe, and all other programs. All of the programs
from the first category satisfy strong memory safety properties and
are free of unbounded loops.

The kernel verifier, though, is not a panacea. Just because a
program is safe to execute in kernel mode does not mean that it is
functionally correct and cannot harm the system. For instance, a
safe but ill-formed scheduling policy could drop some tasks, and a
firewall could drop, by mistake, valid packets required and expected
by an application.

Given eBPF’s wide adoption by superscalars [18], especially in
critical tasks such as firewalls and security analysis, the appearance
of eBPF marketplaces [12] with unknown and potentially malicious
eBPF programs, and the emerging LLM-based code generation [13],
which can be used to write eBPF programs, we need a robust way
to reason about the functional correctness of eBPF programs. Al-
though standard software engineering methods, such as extensive
testing and progressive deployment can partially play this role, we
believe that eBPF as a new technology requires and can enable
much better tooling specially tailored to its characteristics.

The main insight of this paper is that the set of eBPF programs
that already successfully pass the in-kernel verifier are amenable to
further automated analysis, which can guarantee their partial or full
functional correctness. Such an analysis has the potential to provide
stronger guarantees than unit testing at a lower development cost.

In this paper, we present DRACO !, an extensible tool that tar-
gets eBPF programs that passed the in-kernel verifier to provide
guarantees about the program itself, through a full or a partial
specification, and its interaction with the rest of the system, i.e.
other eBPF programs and userspace. Based on the previous insight,
DRACO uses exhaustive symbolic execution to reason about eBPF
programs that are guaranteed to terminate, given that the in-kernel
verifier has already accepted the programs under analysis.

We implement DRACO by extending KLEE [2], a widely used
symbolic execution engine, and as a first step use it to verify ei-
ther fully or partially certain properties of various real-world and
research XDP programs, such as Katran [16], hXDP FW [1], Flu-
via [20] and CRAB [4].

2 BACKGROUND

Kernel Verifier: Because eBPF programs are executed in kernel
mode, the kernel must ensure they will be efficiently executed and
will not crash. To that end, a kernel component called the eBPF
verifier is in charge of exploring all possible execution paths of
eBPF programs loaded in the kernel. The verifier conservatively
checks a set of general safety properties of eBPF programs, such
as the absence of NULL pointer dereferencing and the absence of

!Draco was an Athenian legislator famous for his harsh laws.

https://doi.org/10.1145/3672197.3673435
https://doi.org/10.1145/3672197.3673435
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3672197.3673435&domain=pdf&date_stamp=2024-08-04

eBPF ’24, August 4-8, 2024, Sydney, NSW, Australia

unbounded loops. To achieve this, the verifier depends on abstract
interpretation[3] which tries to reason about variable lifetimes and
memory accesses of the eBPF programs on top of having to traverse
all potential execution paths.

Functional Correctness: However, even if a program passes
the verifier, it does not mean that the program is correct. The
program may have functional bugs, which the verifier is not built to
detect. For example, incorrect XDP programs can lead to the loss of
network reliability, and since XDP programs can be used for packet
filtering and access control, incorrect programs can compromise
network security. Even if an eBPF program is not buggy, it might
not be configured correctly through its control plane userspace
program or it might not fully cover the target behaviour. The latter
is highly likely in the case of eBPF marketplaces [12] from which
people can deploy eBPF programs they have not written themselves.
Therefore, verifying the functional correctness of an XDP program
and reasoning about its expected interactions with userspace and
other eBPF programs is crucial.

Symbolic Execution: Apart from abstract interpretation used
in the eBPF verifier, another method for program static analysis is
symbolic execution. Symbolic execution automatically and system-
atically tries to explore all feasible paths in a program. The key idea
behind it is the notion of symbolic variables - variables that can
represent any value, or a set of values defined by constraints gener-
ated any time a symbolic variable affects a program branch. As the
number of branches in a program increases, the number of paths
increases exponentially - a phenomenon known as path explosion.
Thus, large programs can require a lot of time and resources to
exhaustively symbolically execute, if at all possible. Consequently,
symbolic execution can be used as a tool for both extensive testing
to find bugs - even if it does not explore all possible paths in a
program - and as a tool for verification when exhaustive. The latter
is the case we explore in DRACO, since passing the kernel verifier
already ensures the lack of path explosion.

3 DRACO’S DESIGN

We design DRACO to be an extensible tool that can be used to verify
different properties about either individual programs or program
interactions for programs that run in the kernel. DRACO’s core is a
symbolic execution engine that can exhaustively explore all paths
in a given eBPF program. On top of this engine, DRACO provides
a set of components, each running a different analysis. Currently,
DRACO targets XDP programs only but could be extended to sup-
port other types as well. In the rest of this section, we introduce
the design of the current components and explain how developers
can use and extend DRACO.

3.1 Verifying Individual Programs

To verify the functional correctness of an individual program, one
has to first define what is the correct and expected behaviour of
an eBPF program, namely to create a spec. Such specs can take
different shapes and forms, be written in different languages, by
different sets of developers, and provide different levels of coverage.

DRACO supports two types of specifications: external and inte-
grated. External specifications are executable programs written in

38

Lu et al.

Assertion

Description

ASSERT(bool)
ASSERT_RETURN(action)
ASSERT_CONSTANT (addr, len)

ASSERT_END_EQ(addr, type, x)

ASSERT_IF_ACTION_EQ(action, addr,

type, x)
ASSERT_END_EQ_ADDR(addr_end,
addr_now, len)

bool holds (normal assert function)
Main function must return action
The contents at addr for len bytes are
the same when execution reaches the
assertion as when the main function
returns

The value at addr is x when the main
function returns

Same as above but only when the return
value of the main function is action
The contents at addr_now when execu-
tion reaches the assertion are the same

as the contents at addr_end when the
main function returns for len bytes

Table 1: Temporal assertions supported by DRACO

C/C++ or Rust that implement the same functionality with the tar-
get eBPF program either fully or partially. Such specifications can
either be written by the same eBPF developers or developers that do
not implement the eBPF functionality themselves. Integrated speci-
fications take the form of assert statements throughout the eBPF
program and, unlike the previous approach which is black-box, they
can reason about the internals of an eBPF program. Specifications
also include a context, a set of constraints of the incoming network
packet and the state of the maps the eBPF program might access.
Initial map constraints can specify key-value pairs in a map with
specific values or their absence. Keys that are not specified will have
both “absent” and “present” execution paths verified when looked
up with the “present” path returning a symbolic value. To ensure
the specifications can be written at minimal cost to the developers,
they use a similar syntax to eBPF programs to reduce the barrier of
entry to writing specifications.

A full specification is expected to fully describe the expected
behaviour of an eBPF program across all inputs, which in DRACO’s
case, which focuses on XDP programs, is the incoming packet.
For example, in the case of network functions the full spec can be
an executable version of the equivalent RFC [27]. A partial spec
only focuses on parts of the expected functionality. For example,
a partial spec for a firewall is to eliminate all ICMP traffic. In this
case, the firewall can eliminate more types of traffic beyond ICMP.
Finally, the integrated specs can be more fine-grained and targeted.
For example, they can assert that certain paths in the code are
incompatible, e.g. there can be no TCP processing if there is no TCP
header in a packet, or that certain program variables have their
expected values at different points of the execution.

External Specs: An external specification (partial or full) com-
prises the program logic and the context. A program is said to match
a specification if given the context, all execution paths that are
feasible in the eBPF program and the specification are equivalent,
i.e. the final packet state, map state, and return value are the same.
The difference between a full and a partial specification is that any
path in the full spec should be equivalent to any path in the eBPF
program and vice versa, while in the partial spec, the relationship
is one way. Partial specs also allow for a more lenient definition of
equivalence, to allow focus only on certain parts of the program
end state, e.g. only the return code.

Integrated Specs: eBPF developers develop the integrated spec
as part of the program at the same time as the program logic. Such

Towards Functional Verification of eBPF Programs

int xdp_program(struct xdp_md »ctx) {
struct eth_hdr «eth = get_eth(ctx);
ASSERT_CONSTANT(ð->source, sizeof(eth->source));
ASSERT_IF_ACTION_EQ (XDP_DROP, eth->eth_proto ,

__bel6, BE_ETH_P_IPV6);

if (eth->eth_proto == BE_ETH_P_IPV6) return XDP_DROP;
return XDP_PASS;

}

Listing 1: Asserting that a program keeps the Ethernet source
unchanged for all packets and all dropped packets are of IPv6
packets

specs take the form of assert statements. Beyond the usual asser-
tions, though, that can be triggered on the spot, DRACO allows
reasoning about the end state of an eBPF program based on its
current state at specific execution points. Table 1 enumerates a
selected list of supported assertions; the inequality assertions and
assertions about map contents are omitted for brevity. Listing 1
shows an example using temporal assert statements to assert an
unchanged Ethernet source and that all dropped packets are IPvé6.

Multi-core programs: DRACO supports some analysis of multi-
core programs. BPF maps accessed by multi-core programs can
either be per core or shared between cores. Multi-core programs
with per-core BPF map access are logically equivalent to single-
core programs, so they can be verified using both external and
integrated specifications. Multi-core programs with shared BPF
maps can be verified against only integrated specifications. Each
lookup to shared BPF maps always forks execution as another core
could have updated the BPF map since the previous access. In one
path, the key is assumed to be absent and in the other path, a new
unconstrained symbolic value is returned.

3.2 Verifying Interactions Across Programs

DRACO goes beyond a single eBPF program and tries to reason
about interactions between different eBPF programs, specifically
targeting multiple eBPF programs attached to the XDP hook. Al-
though such chaining encourages the development of reusable and
modular programs that can be composed to build complex systems,
an incorrect update to the state by one program can trigger an
avalanche of erroneous execution paths if other programs rely on
that state. Additionally, certain programs may need to execute in a
specific order if one program relies on the function of another. For
example, the order of applying a firewall or an ACL relative to a
NAT is crucial. We focus on interactions that can be made through
maps and packet data, leaving dependencies on the internal kernel
state for future work.

A key insight in determining if the ordering of programs matters
is that sequenced programs affect each other through shared state.
Read after Write (RAW), Write after Write (WAW), and Write after
Read (WAR) dependencies are the ones that matter for DRACO.
With this in mind, we define the ReadSet(P) of a program P as the
set of externally visible state locations that the program reads from,
for each execution path. Similarly, the WriteSet(P), of a program
P is defined to be the set of externally visible state locations the
program writes to, for each execution path. Using this definition,
the read set of an XDP program is the set of bytes in the packet
from which the program reads, PacketRead(P), in addition to the set

39

eBPF ’24, August 4-8, 2024, Sydney, NSW, Australia

of keys looked up from shared maps, MapRead(P):
ReadSet(P) = PacketRead(P) U MapRead(P)

The definition for the write set is similar, using the set of bytes in
the packet the program writes to, PacketWrite(P), and the set of key-
value pairs from shared maps the program updates, MapWrite(P):

WriteSet(P) = PacketWrite(P) U MapWrite(P)

With the ReadSet(P) and WriteSet(P) of a program P defined, we
now introduce a method to check interactions between different
programs. Consider two programs, P1 and P2. Given their respec-
tive ReadSets and WriteSets, the Overlap of the programs is defined
as:

Overlap(P1, P2) =(ReadSet(P1) N WriteSet(P2))
U (WriteSet(P1) N ReadSet(P2))
U (WriteSet(P1) N WriteSet(P2))

If two programs have no overlap between their ReadSet and
WriteSet, i.e. Overlap(P1,P2) = 0, it is safe to run the programs
in any order. This commutative property of the programs arises
because the interactions of one program with shared state do not
affect the interactions the other program has. Thus, the externally
observable state will be identical no matter the order the programs
run. However, if the Overlap of two programs contains at least
one element, the order of execution becomes important since one
program’s updates can be observed by the other program.

3.3 Verifying Interactions with Userspace

The other type of interaction eBPF programs have is with userspace
programs through maps. Userspace programs usually play the
role of the control plane for the eBPF-based data plane. Hence,
DRACO aims to aid with control plane configurations and updates
by analysing the interactions with userspace and the eBPF pro-
gram. Note that DRACO does not try to verify the behaviour of
the userspace program, but only provides hints as to how a control
program should be written.

Correlation between Multiple Maps: Analysing the inter-
actions between different BPF maps in an eBPF program provides
valuable insights into how the maps influence each other, allowing
developers of userspace programs to update maps in a more sen-
sible way. Figure 2 shows an example from an eBPF program [1]
of a map correlation where the value returned from a lookup on
a map can be used as the key to a redirect on another map. Such
map correlation indicates that userspace programs need to update
maps in a particular order with meaningful values.

A value is said to be derived from a map helper function call if it
uses the return value in some way. By tracking all such derived val-
ues, if an argument to a map helper function is derived, these maps
are identified as being correlated. DRACO detects and reports these
correlations so that control plane developers can either enforce or
take into consideration this correlation when updating those maps.

Maps and Control Flow: The control flow of eBPF programs is
further complexified as they often interact with BPF maps, similar to
the importance of table contents in match-action pipelines [15, 22].
So, it is essential for these maps to be properly configured to avoid
unexpected execution paths. This DRACO component works in
conjunction with the assert-based specification, as it depends on

eBPF ’24, August 4-8, 2024, Sydney, NSW, Australia

flow_leaf = bpf map_lookup_elem(&flow_ctx_table , &flow_key);
if (flow_leaf)

return bpf_redirect_map(&tx_port, flow_leaf->out_port, 0);

Listing 2: Example of correlation between maps

asserts to identify illegal paths and the conditions on the maps
under which they are executed.

Using the same definition for a value being derived from a map
helper function call, a map affects the control flow if the condition
in a conditional branch is derived from a map helper function call.
By tracking all such branches, these branches as well as the original
map helper function called can be reported upon assertion failures.
Additionally, the outcome of the branch condition of each derived
branch is reported as well - together these form conditions on
the map under which the erroneous path is taken. Developers can
then use these insights to correctly configure the maps to prevent
the execution of these incorrect paths [21] or find out what map
contents would break the intended behaviour of the program.

4 IMPLEMENTATION

DRACO depends on exhaustive symbolic execution. To do so, it
builds on top of KLEE [2], which is a symbolic execution engine
operating at the LLVM IR level, hence DRACO currently assumes
the availability of the source code. DRACO uses the symbolic mod-
els for the 1ibbpf functions also used in PIX [10], as defined in the
ebpf-se [5] opensource project.

4.1 Verifying Individual Programs

External Specification: DRACO uses a driver program that com-
bines the executable specification with the eBPF program and uses
KLEE to ensure their functional equivalence. Specifically, it uses a
symbolic packet and asserts that spec(packet) == prog(packet)
and that the packet is modified in the same way in both cases. KLEE
will ensure that the assertion holds for all possible paths. For state-
ful programs, i.e. ones that manipulate maps, DRACO ensures that
the eBPF program and the specification operate on the same initial
map state and asserts that the final state of the maps is identical.

The case of partial specification follows a similar logic. Given
the one-way equivalence, i.e. every valid path in the specification
should behave the same in the eBPF program but not vice versa,
DRACO only checks equivalence for the valid specification paths.
To do so, it first runs the specification to extract the set of symbolic
constraints for each valid path and only for those paths it runs the
actual program and asserts the final state. For the case of partial
specification, the definition of equivalence can vary. DRACO also
allows for partial equivalence, e.g. the partial spec can ignore the
final contents of the maps and only focus on the return value of
the program and/or the packet contents.

Listing 3 partially shows the driver program DRACO uses to ver-
ify the correctness of an eBPF program based on a full specification.
Initially, it creates a symbolic packet and its copy, one for the spec
and one for the actual program, both with the same initial symbolic
constraints. Next, it configures the initial map values and runs the
program. Afterwards, it resets the maps to their initial values and
runs the specification. It then determines if the current execution

40

Lu et al.

void functional_verify (xdp_func prog, xdp_func spec, ...) {

void «pktl = create_symbolic_packet (...);

set_initial_packet_constraints (pktl);

void «pkt2 = copy_packet(pktl);

set_initial_map_constraints ();

// Run the eBPF program

struct xdp_state prog_state = get_end_state(prog, ctx);

reset_symbolic_maps ();

set_initial_map_constraints ();

// Run the executable specification

struct xdp_state spec_state = get_end_state(spec, ctx_copy);

// Check if the same assumptions about map state were taken
if (different_map_assumptions ()) return;

// Assert equivalence

assert (xdp_state_equal(&prog_state , &spec_state));

}
Listing 3: Driver program for verifying external full specifi-
cations

path should be verified based on whether the same assumptions
were taken about the initial contents of the map, i.e. if a key was
assumed to be present during a BPF map lookup in the program it
must also be assumed to be present when executing the specifica-
tion. Finally, it asserts that the final states, i.e. return value, packet
contents, and map contents, are identical.

Integrated Specification: asserts added by the eBPF devel-
opers in the source code can be split into two groups: the ones
that trigger immediately when the symbolic execution engine goes
through them and the ones that trigger at the end of the execution.
For the latter, DRACO leverages a set of queues which store the
relevant data at the point when the assertions are made, which
are checked in the relevant manners when the main XDP function
returns.

4.2 Verifying Program Interactions

Unlike when verifying individual programs, the verification of in-
teractions between programs and the system requires additional
information to be generated when the program is symbolically ex-
ecuted. DRACO extends KLEE to enable dynamic determination
of exactly when a program accesses maps or packet data, and the
results of branching decisions leading to different points in the
program for its interaction analysis.

Interactions Across Programs: DRACO extends the KLEE
interpreter to obtain the memory object storing the packet data,
and instruments all load and store instructions to determine if
they access the same memory object that stores the packet data,
thus creating the PacketRead and PacketWrite sets. To calculate the
MapRead and MapWrite sets of a program, a similar method is used
to track all memory objects that store maps. All reads and writes to
these objects are captured, creating the MapRead and MapWrite sets.
Note that even if BPF helper functions are not used to access these
maps, for example by using a pointer dereference, accesses to maps
are still captured, as there must be a 1load or store instruction to
read from or write to memory where maps are stored, respectively.

Towards Functional Verification of eBPF Programs

vip_info = bpf map_lookup_elem(&vip_map, &vip);

vip_info ->vip_num = 7;

Listing 4: Example of update without using map helper func-
tions

l Program [LOC [Type [Context [Spec [Paths [Time [

hXDP FW | 686 Full 2 27 64 6.93s
hXDP FW | 686 Full 12 18 4 3.45s
Fluvia 156 | Partial 0 4 23 23.35s
Katran 4244 | Partial 0 17 10 71.24s
CRAB 365 | Assert 16 20 5 1.90s

Table 2: Evaluation of different methods to functionally ver-
ify individual programs by counting lines of code in each
specification’s context and program logic/assertions and mea-
suring the time taken for verification

To ensure that the analysis covers meaningful paths that exist
in both programs, DRACO uses a third driver program that runs
the two main XDP functions, with a separator to indicate their
boundary. During the symbolic execution of the first program,
DRACO collects the aforementioned read and write sets. After
reaching the separator, KLEE switches to stop adding elements to
the ReadSet and WriteSet, but instead to check for presence in those
sets. This method determines the Overlap of two programs for any
viable path instead of an over-approximation across all possible
paths.

Interaction with Userspace: Contents of BPF maps are ac-
cessed through calls to map helper functions, thus DRACO also
extends KLEE to intercept all such calls. Each call is tracked in a
data structure which maps call instructions to a set of values that
use the return value, unique for each execution path. Instructions
are added to the set for a call if at least one of their operands is
present in the set.

Using this common data structure, correlations between maps
and maps that affect the control flow can be identified. Arguments
to map helper functions that are present in one of the sets indicate a
dependency between maps, and the original call to the map helper
function that affects a branch can be identified. As information is
maintained per execution path, when an assertion failure occurs,
only the dependent branches for the error path can be reported.

Since the userspace program may not be available, maps can
contain fully symbolic contents to ensure all possible behaviours
are captured. If it is known how the userspace will populate these
maps, verification helper functions can be used to constrain map
contents, to avoid symbolic execution of unfeasible paths. Currently,
the constraints are limited to specifying a map contains or doesn’t
contain a key, which can be symbolic.

5 EVALUATION

We use DRACO to specify and analyze the set of XDP programs
included in the ebpf-se [5] tool. Through the evaluation, we aim
to answer the following questions:

e How easy is it to write full or partial specs for XDP programs?

41

eBPF ’24, August 4-8, 2024, Sydney, NSW, Australia

Execution Time (s) Avg Memory (MiB)

Program || Original ‘ Extended || Original ‘ Extended
hXDP FW 0.15 0.16 30.45 30.88
Fluvia 0.33 0.43 30.43 30.76
CRAB 0.17 0.19 32.26 32.72
Katran 77.84 100.42 36.30 37.01

Table 3: Benchmark of performance for extended KLEE vs
original

e How long will it take to evaluate the equivalence of the specs
and perform the interaction analysis?

Specification Equivalence: Table 2 summarises the results
of our evaluation. hXDP FW is a firewall program that is verified
fully. The second full specification verification places more con-
straints on the initial state resulting a simpler specification with
fewer execution paths and a faster verification time. Fluvia is an
IPFIX exporter and its partial specification verifies that regardless
of context, it always returns XDP_DROP with no modifications to
the packet state. Meta’s Katran load balancer is partially verified
that all fragmented IPv4 packets are dropped and all ICMP Echo
packets are transmitted with possible modifications. Finally, we use
an integrated specification for CRAB, which behaves similarly to
an L4 load balancer but only handles SYN packets and adds a cus-
tom redirection header in those packets. DRACO conducts various
sanity checks to ensure a redirection options header is correctly
prepended to the packet for TCP SYN packets, the MAC address is
correctly updated and various values remain constant after certain
points during the code execution. It is important to keep in mind
that the performance of partial specification and assert statements
methods depend heavily on the complexity of the functionalities
being verified, which is represented as Spec - referring to the lines
of code of partial specification or the number of assert statements.

Comparing the lines of code against the lines of code used to
write the specification or assertions, it is evident that after writing
an eBPF program it takes significantly less work to write some
form of specification to verify certain program functionality. In all
cases, we are also able to complete the functional verification in
a reasonably fast time, especially if map state equivalence is not
required, concluding that DRACO could also run as part of the
CI/CD pipeline.

Interaction Analysis: To evaluate the analysis of interactions
between a program and the system, we measure the time taken
and additional memory DRACO takes to generate all of the data
required for all of the analysis between a program and a userspace
program, not considering computing the Overlap. Since the genera-
tion of the data happens during symbolic execution, we compare
the performance of the original unmodified version of KLEE with
the extended KLEE on these programs. The results are shown in
Table 3.

Compared with the base performance of the original, unmodified
version of KLEE, the extended version of KLEE runs on average
9.5% slower. This is due to the extra checks performed to generate
the data. An additional 0.40 MiB of memory is used on average to
store all information required for generating the data for analysis.

eBPF ’24, August 4-8, 2024, Sydney, NSW, Australia

6 RELATED WORK

eBPF Verifier: Since the verifier determines if programs are safe to
run or not, bugs in the verifier can be exploited by attackers, compro-
mising the security of the system. Agni [25] proves the soundness
of the verifier’s value range analysis by developing soundness spec-
ifications, and found bugs where the analysis was not sound. BVF
[23] finds correctness bugs in the verifier through the use of a test
oracle.

P4 Programs: p4v [15] is a tool for statically verifying the
correctness of P4 programs through the use of user-written anno-
tations. It introduces the concept of control plane interfaces which
describe the set of possible behaviours of the control plane. The
interfaces are written in GCL and must be written by hand.

Vera [22] is a tool that can automatically verify snapshots of P4
programs using symbolic execution. Through the use of symbolic
entries in the match-action tables, Vera is also able to automatically
verify multiple snapshots at once. Users can also write program-
specific properties in NetCTL, an extension of Computation Tree
Logic.

ASSERT-P4 [8] verifies P4 behaviour by making temporal asser-
tions about the future behaviour of a program, then verifying these
assertions using symbolic execution in KLEE. It utilises a Python
script to convert P4 files into C while adding assert statements
and variables (to store data to be used by the assert statements),
before executing the translated file in KLEE to check the assertions.
DRACO’s design and implementation of using assert statements
to verify eBPF programs is inspired by ASSERT-P4. However, the
implementation differs as eBPF functions are already written in
C, so the dependency of using an additional scripting language is
avoided and the implementation is inlined.

Network Functions: VigNAT [27], later extended to Vigor [26],
is used for verification of network functions written in C using
KLEE. Programs are split into stateful and stateless parts, which are
verified individually and then stitched together. While the stateless
code can be verified easily using symbolic execution, the state-
ful code must be verified by hand by verification experts using
separation logic. Vigor also introduces the “pay-as-you-go” ideol-
ogy allowing developers to write partial specifications for network
functions. The way these partial specifications are supported influ-
enced our design choices in supporting the verification of partial
specifications of eBPF programs.

Other approaches to eBPF verification: Serval [19] is a frame-
work for creating automated verifiers for systems software, includ-
ing the BPF ISA. It relies on symbolic evaluation to verify pro-
grams against a specification written in Rosette [24], an extension
of the solver-aided programming language Racket [7]. However,
the prerequisite knowledge of this language presents a barrier to
developers writing specifications for their programs.

7 FUTURE WORK AND OPEN QUESTIONS

We identify several directions for future work. Some of them are
more engineering-heavy than others. For example, symbolic mod-
elling for eBPF maps currently only covers certain BPF map types.
Adding more map types, will allow DRACO to be used with a wider
range of XDP programs. Similarly, DRACO currently only supports
XDP programs. Extending to more eBPF program types beyond XDP

42

Lu et al.

will require supporting more helper functions and implementing
symbolic models for kernel state that can become more challenging,
since it can affect the interaction between different eBPF programs.

In terms of its model of use, currently DRACO assumes the
availability of the source code for the programs it analyzes, instead
of requiring just the eBPF bytecode. This limitation stems from
the fact that KLEE works at the LLVM IR level. We are currently
working on implementing a lifter from eBPF byte code to LLVM IR
that will allow DRACO to be applicable even in cases without source
code access, which might be the model in future eBPF marketplaces.

The main open question, though, is whether the main insight
based on which we build DRACO will continue to hold. Given the
active development of the in-kernel verifier and the alternative
proposals by the research community, we need to identify whether
exhaustive symbolic execution will always apply to all eBPF pro-
grams, hence allowing their functional verification based on that
approach.

8 CONCLUSION

This paper introduces DRACO, a tool for verifying the functional
correctness of eBPF programs and aiding the developer in under-
standing how unknown eBPF programs behave. This tool builds
upon the symbolic execution engine KLEE [2], leveraging the in-
sight that passing the in-kernel verifier enables exhaustive symbolic
execution. We use DRACO to analyze a series of XDP programs
showing we can do so with minimal development effort and execu-
tion overhead.

ACKNOWLEDGEMENTS

We would like to thank Rishabh Iyer and Nikola Bojanic for pro-
viding us with an understanding of eBPF-SE and how it works. We
thank the anonymous reviewers for their helpful feedback. This
work does not raise any ethical concerns.

REFERENCES

[1] Axbyrd. 2020. FW source code respository. (2020). https://github.com/axbryd/
hXDP- Artifacts

Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2008. KLEE: unassisted
and automatic generation of high-coverage tests for complex systems programs.
In Proceedings of the 8th USENIX Conference on Operating Systems Design and
Implementation (OSDI’08). USENIX Association, USA, 209-224.

Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Unified
Lattice Model for Static Analysis of Programs by Construction or Approximation
of Fixpoints. In POPL. ACM, 238-252.

EPFL Data Center Systems Lab. 2021. CRAB source code respository. (2021).
https://github.com/epfl-dcsl/crab

EPFL Dependable Systems Laboratory. 2024. eBPF-SE source code respository.
(2024). https://github.com/dslab-epfl/ebpf-se

Eunomia. 2023. bpftime Userspace eBPF Runtime.
eunomia-bpf/bpftime. (2023).

Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, Shriram Krishnamurthi,
Eli Barzilay, Jay McCarthy, and Sam Tobin-Hochstadt. 2018. A programmable
programming language. Commun. ACM 61, 3 (feb 2018), 62-71. https://doi.org/
10.1145/3127323

Lucas Freire, Miguel Neves, Lucas Leal, Kirill Levchenko, Alberto Schaeffer-Filho,
and Marinho Barcellos. 2018. Uncovering Bugs in P4 Programs with Assertion-
based Verification. In Proceedings of the Symposium on SDN Research (SOSR ’18).
Association for Computing Machinery, New York, NY, USA, Article 4, 7 pages.
https://doi.org/10.1145/3185467.3185499

Jack Tigar Humphries, Neel Natu, Ashwin Chaugule, Ofir Weisse, Barret Rhoden,
Josh Don, Luigi Rizzo, Oleg Rombakh, Paul Turner, and Christos Kozyrakis.
2021. GhOSt: Fast & Flexible User-Space Delegation of Linux Scheduling. In
Proceedings of the ACM SIGOPS 28th Symposium on Operating Systems Principles

[2

https://github.com/

—
o)

https://github.com/axbryd/hXDP-Artifacts
https://github.com/axbryd/hXDP-Artifacts
https://github.com/epfl-dcsl/crab
https://github.com/dslab-epfl/ebpf-se
https://github.com/eunomia-bpf/bpftime
https://github.com/eunomia-bpf/bpftime
https://doi.org/10.1145/3127323
https://doi.org/10.1145/3127323
https://doi.org/10.1145/3185467.3185499

Towards Functional Verification of eBPF Programs

(SOSP) (SOSP °21). Association for Computing Machinery, New York, NY, USA,
588-604. https://doi.org/10.1145/3477132.3483542

eBPF ’24, August 4-8, 2024, Sydney, NSW, Australia

code with Serval. In Proceedings of the 27th ACM Symposium on Operating Systems
Principles (SOSP ’19). Association for Computing Machinery, New York, NY, USA,

[10] Rishabh Iyer, Katerina Argyraki, and George Candea. 2022. Performance Inter-
faces for Network Functions. In 19th USENIX Symposium on Networked Systems [20
Design and Implementation (NSDI 22). USENIX Association, Renton, WA, 567-584.

225-242. https://doi.org/10.1145/3341301.3359641
NTT Communications. 2024. Fluvia source code respository. (2024). https:
//github.com/nttcom/fluvia/

https://www.usenix.org/conference/nsdi22/presentation/iyer [21] p4language. 2020. p4-constraints source code respository. (2020). https://github.
[11] Zandberg K, Baccelli E, Yuan S, Besson F, and Talpin JP. 2022. Femto-containers: com/p4lang/p4-constraints
lightweight virtualization and fault isolation for small software functions on low- [22] Radu Stoenescu, Dragos Dumitrescu, Matei Popovici, Lorina Negreanu, and

power IoT microcontrollers. In 23rd ACM/IFIP International Middleware Conference
(Middleware "22), November 7-11, 2022, Quebec, QC, Canada. ACM, New York, NY,
USA, 161-173. https://doi.org/10.1145/3528535.3565242

L3AF. 2024. L3AF Marketplace. https://13af.io/. (2024).

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi
Leblond, Tom Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, Thomas
Hubert, Peter Choy, Cyprien de Masson d’Autume, Igor Babuschkin, Xinyun
Chen, Po-Sen Huang, Johannes Welbl, Sven Gowal, Alexey Cherepanov, James
Molloy, Daniel J. Mankowitz, Esme Sutherland Robson, Pushmeet Kohli, Nando
de Freitas, Koray Kavukcuoglu, and Oriol Vinyals. 2022. Competition-level
code generation with AlphaCode. Science 378, 6624 (Dec. 2022), 1092-1097.
https://doi.org/10.1126/science.abq1158

Linux Foundation. 2024. net/ipv4/bpf_tcp_ca.c in the Linux Kernel Source
Tree. https://git kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/net/
ipv4/bpf_tep_ca.c?h=v6.9. (2024).

Jed Liu, William Hallahan, Cole Schlesinger, Milad Sharif, Jeongkeun Lee, Robert
Soulé¢, Han Wang, Calin Cascaval, Nick McKeown, and Nate Foster. 2018. p4v:
practical verification for programmable data planes. In Proceedings of the 2018
Conference of the ACM Special Interest Group on Data Communication (SSIGCOMM
’18). Association for Computing Machinery, New York, NY, USA, 490-503. https:
//doi.org/10.1145/3230543.3230582

Meta. 2024. Katran source code respository. (2024). https://github.com/
facebookincubator/katran

Meta and Google. 2024. sched_ext: BPF extensible scheduler class. https://github.
com/sched-ext/scx. (2024).

Bill Mulligan and Daniel Borkman. 2023. The Silent Platform Revolution: How
eBPF Is Fundamentally Transforming Cloud-Native Platforms. https://www.
infoq.com/articles/ebpf-cloud-native-platforms/. (2023).

Luke Nelson, James Bornholt, Ronghui Gu, Andrew Baumann, Emina Torlak, and
Xi Wang. 2019. Scaling symbolic evaluation for automated verification of systems

Costin Raiciu. 2018. Debugging P4 Programs with Vera. In Proceedings of the 2018
Conference of the ACM Special Interest Group on Data Communication (SIGCOMM
’18). Association for Computing Machinery, New York, NY, USA, 518-532. https:
//doi.org/10.1145/3230543.3230548

Hao Sun, Yiru Xu, Jianzhong Liu, Yuheng Shen, Nan Guan, and Yu Jiang. 2024.
Finding Correctness Bugs in eBPF Verifier with Structured and Sanitized Program.
In Proceedings of the Nineteenth European Conference on Computer Systems (Eu-
roSys "24). Association for Computing Machinery, New York, NY, USA, 689-703.
https://doi.org/10.1145/3627703.3629562

Emina Torlak and Rastislav Bodik. 2013. Growing solver-aided languages with
rosette. In Proceedings of the 2013 ACM International Symposium on New Ideas,
New Paradigms, and Reflections on Programming & Software (Onward! 2013).
Association for Computing Machinery, New York, NY, USA, 135-152. https:
//doi.org/10.1145/2509578.2509586

Harishankar Vishwanathan, Matan Shachnai, Srinivas Narayana, and Santosh
Nagarakatte. 2023. Verifying the Verifier: eBPF Range Analysis Verification. In
Computer Aided Verification, Constantin Enea and Akash Lal (Eds.). Springer
Nature Switzerland, Cham, 226-251.

Arseniy Zaostrovnykh, Solal Pirelli, Rishabh Iyer, Matteo Rizzo, Luis Pedrosa,
Katerina Argyraki, and George Candea. 2019. Verifying software network func-
tions with no verification expertise. In Proceedings of the 27th ACM Symposium on
Operating Systems Principles (SOSP °19). Association for Computing Machinery,
New York, NY, USA, 275-290. https://doi.org/10.1145/3341301.3359647

Arseniy Zaostrovnykh, Solal Pirelli, Luis Pedrosa, Katerina Argyraki, and George
Candea. 2017. A Formally Verified NAT. In Proceedings of the Conference of the
ACM Special Interest Group on Data Communication (SIGCOMM ’17). Association
for Computing Machinery, New York, NY, USA, 141-154. https://doi.org/10.1145/
3098822.3098833

https://doi.org/10.1145/3477132.3483542
https://www.usenix.org/conference/nsdi22/presentation/iyer
https://doi.org/10.1145/3528535.3565242
https://l3af.io/
https://doi.org/10.1126/science.abq1158
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/net/ipv4/bpf_tcp_ca.c?h=v6.9
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/net/ipv4/bpf_tcp_ca.c?h=v6.9
https://doi.org/10.1145/3230543.3230582
https://doi.org/10.1145/3230543.3230582
https://github.com/facebookincubator/katran
https://github.com/facebookincubator/katran
https://github.com/sched-ext/scx
https://github.com/sched-ext/scx
https://www.infoq.com/articles/ebpf-cloud-native-platforms/
https://www.infoq.com/articles/ebpf-cloud-native-platforms/
https://doi.org/10.1145/3341301.3359641
https://github.com/nttcom/fluvia/
https://github.com/nttcom/fluvia/
https://github.com/p4lang/p4-constraints
https://github.com/p4lang/p4-constraints
https://doi.org/10.1145/3230543.3230548
https://doi.org/10.1145/3230543.3230548
https://doi.org/10.1145/3627703.3629562
https://doi.org/10.1145/2509578.2509586
https://doi.org/10.1145/2509578.2509586
https://doi.org/10.1145/3341301.3359647
https://doi.org/10.1145/3098822.3098833
https://doi.org/10.1145/3098822.3098833

	Abstract
	1 Introduction
	2 Background
	3 DRACO's Design
	3.1 Verifying Individual Programs
	3.2 Verifying Interactions Across Programs
	3.3 Verifying Interactions with Userspace

	4 Implementation
	4.1 Verifying Individual Programs
	4.2 Verifying Program Interactions

	5 Evaluation
	6 Related Work
	7 Future Work and Open Questions
	8 Conclusion
	References

