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ABSTRACT
Load balancers are a ubiquitous component of cloud deploy-
ments and the cornerstone of workload elasticity. Load bal-
ancers can significantly affect the end-to-end application
latency with their load balancing decisions, and constitute a
significant portion of cloud tenant expenses.

We propose CRAB, an alternative L4 load balancing scheme
that eliminates latency overheads and scalability bottlenecks
while simultaneously enabling the deployment of complex,
stateful load balancing policies. A CRAB load balancer only
participates in the TCP connection establishment phase and
stays off the connection’s datapath. Thus, load balancer pro-
visioning depends on the rate of new connections rather
than the actual connection bandwidth. CRAB depends on
a new TCP option that enables connection redirection. We
provide different implementations for a CRAB load balancer
on different technologies, e.g., P4, DPDK, and eBPF, showing
that a CRAB load balancer does not require many resources
to perform well. We introduce the connection redirection
option to the Linux kernel with minor modifications, so that
it that can be shipped with the VM images offered by the
cloud providers. We show how the same functionality can be
achieved with a vanilla Linux kernel using a Netfilter mod-
ule, while we discuss how CRAB can work while clients and
servers remain completely agnostic, based on functionality
added on the host.

Our evaluation shows that CRAB pushes the IO bottleneck
from the load balancer to the servers in cases where vanilla
L4 load balancing does not scale and provides end-to-end
latencies that are close to direct communication while retain-
ing all the scheduling benefits of stateful L4 load balancing.
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1 INTRODUCTION
Load balancing is ubiquitous: nearly all applications today
running in datacenters, public clouds, at the edge, or as core
internet services rely on some form of load-balancing for
both availability and scalability. Load balancing can have
different forms, e.g., L4, L7, DNS-based etc. and can be imple-
mented in hardware or in software. There has been consid-
erable research on load balancing [3, 9, 16, 24, 35, 42, 43, 47–
49] both from academia and industry due to not only the
demands for mass deployments, high throughput, and low
latency variability, but also the demands to lower provider
resources specifically dedicated to it. For instance, Google
reports that software-based load balancing can take up to
3-4% of a datacenter’s resources [16].
This paper focuses on internal load balancers, which are

deployed between clients and servers within the same dat-
acenter or public cloud. Internal load balancers can have a
significant impact on the end-to-end latency both due to their
load balancing decisions and the intermediate hop, while also
constituting a major part of the infrastructure costs for cloud
tenants. A common pattern includes the deployment of an in-
ternal cloud service, placed behind an internal load balancer,
that spawns new service instances according to load require-
ments and registers them with the load balancer, leading to
seamless scalability and elasticity.
Figure 1 illustrates a sample cloud-based, two-tier appli-

cation. Users using their browsers hit the public IP of the
external load balancer and their requests end up being served
by the two web servers. Those servers act as internal clients
for the backend-servers that are behind the internal load
balancer and communicate with a managed database service.
This design pattern allows the web tier and the back-end tier
to scale independently and remain agnostic to each other
due to the use of the two load balancers. Similar examples of
such design patterns for services (or microservices) include
ML inference to create recommendations, a user authentica-
tion microservice [23], generic application servers, and any
workload orchestrated in containers such as Kubernetes[39].

Internal load balancers must be able to handle low-latency,
high-throughput RPCs, typically implemented on protocols
such as gRPC [26], Thrift [55], HTTP, or even custom proto-
cols on top of TCP, e.g., Redis, Memcache. The technical chal-
lenge is to spread the load as evenly as possible by leveraging
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rich, stateful scheduling policies while rapidly adjusting to
changes in the service set, adding minimum latency over-
head to the application, not creating I/O bottlenecks, and
avoiding broken connections. State-of-the-art internal load
balancers have benefited from recent innovation in protocol
design specifically aimed at improving their scalability, in-
cluding transport protocols other than TCP [33, 38, 45]. Such
approaches though, break backwards compatibility with ex-
isting applications, while TCP still remains prevalent both
for datacenter [2] and cloud communications. We note that
this problem statement is different from that of external load
balancers, who must accept and filter standards-based traf-
fic from the Internet, mostly deal with HTTP(S) traffic and
might also implement TLS termination.
Our approach bypasses the load balancer without regret.

Specifically, we remove the load balancer from the critical
path as much as possible and offer close to direct commu-
nication latencies. At the same time, our design allows for
elaborate load balancing policies that improve tail-latency
and quickly react to changes in the service set.

We design CRAB, a Connection Redirect LoAd Balancer.
CRAB depends on a new TCP option included in the SYN
and SYN-ACK packets that enables traffic redirection. This
allows CRAB to only deal with SYN packets and stay off the
connection datapath, thus tremendously reducing the load
balancing load, while still being able to implement complex
load balancing policies that otherwise would require a state-
ful load balancer implementation.

Our implementation shows that CRAB’s datapath can be
easily implemented in a programmable switch or in software
using kernel-bypass or kernel-based mechanisms. The CRAB
implementation in clients and servers requires a modest
change; this can be implemented in a kernel module that has
no measurable impact on performance or as direct kernel
modifications offered as pre-built images to cloud tenants.

Our evaluation demonstrates that CRAB outperforms L4-
based load-balancers in terms of added latency overhead,
connection throughput, and load balancing policies while
being implemented on top of a simple stateless design.

Our contributions are:
• The design of a backward-compatible extension to RFC
791 [50] that enables TCP connection redirection
• The design of a CRAB load balancer that depends on the
new connection redirect feature of TCP and supports flexible
scheduling policies.
• The implementation of the TCP connection redirection
option in the Linux kernel for both clients and servers. Four
implementations of the load balancer using P4, DPDK, eBPF
and Netfilter.
• A discussion on the caveats, assumptions, and opportu-
nities for CRAB in the public cloud and the integration of
CRAB for Kubernetes NodePort load balancing.

Browsers

Datacenter

LB LB

Web 1

Web 2

Back 1

Back 2

Back 3

Figure 1: Sample 2-tier cloud application. Web servers
handle web traffic coming from users’ browsers and
act as clients for the back-end servers that run the ap-
plication logic and communicatewith amanaged data-
base. The light green octagon is an external load bal-
ancer while the dark green one is an internal load bal-
ancer.

The end-point CRAB implementation and the source code
for the different CRAB load balancers can be found here 1.

2 MOTIVATION AND BACKGROUND
In this section, we first showcase the problemwe aim to solve
and quantify the potential benefits CRAB can achieve. Then,
we provide a comparative description of the state-of-the-art
in load balancing that drives our design.

To begin, we run a simple experiment on the public cloud
which mimics a scenario that many applications encounter
today. We deploy two VMs on Microsoft Azure [5], one act-
ing as a client and the other as a server both configured with
accelerated networking [6]. Further, we place the server VM
behind an Azure internal load balancer. In this setup, the
client VM corresponds to the web tier and the server VM cor-
responds to the back-end tier from Figure 1. As benchmarks,
we run a custom implementation of Netperf’s CRR and
RR benchmarks [63]. The CRR (Connect-Request-Response)
benchmark measures the latency to open a connection, send
an 8-byte payload, and wait for the server to echo the same
payload. On receiving the response, the client closes the con-
nection and starts over. In the RR (Request-Response) bench-
mark clients establish connections once and then use the
same connection to send all their requests. RR measures the
time between sending an 8-byte request and receiving the
echoed back 8-byte response. Both experiments operate in
a closed loop with one connection and one outstanding re-
quest at a time. Both the client and the server applications
run on the vanilla kernel-based networking stack.
Figure 2 illustrates the 99th percentile observed latency

for the CRR and RR experiments with and without the load
balancer. Naturally, the latency for direct communication is

1https://github.com/epfl-dcsl/crab
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Figure 2: Connection-Request-Response (CRR) and
Request-Response (RR) latency benchmarks onAzure
with accelerated networking with and without an
Azure internal load balancer

lower than the load-balanced scenario. However, the latency
overhead introduced by the load balancer is significant for
both the RR and the CRR benchmarks. The load balancer
adds approximately 1ms and 2ms respectively for the RR and
CRR benchmarks; such a large overhead can overshadow the
cost of non-balanced RPC.
Given this significant latency overhead associated with

internal cloud load balancing, our goal is to minimize it
as much as possible to achieve latencies that are close to
direct communication. To do so, we need to understand the
underlying load balancing mechanisms and policies.

2.1 Load Balancing Flavors
In this section, we categorize and compare the state-of-the-
art approaches to load balancing for internal cloudworkloads
running on top of VMs or containers. Our comparison is
based on the following criteria:
• Load Balancing Policy: Centralized policies leverage
a global view that includes every back-end server while
distributed policies make scheduling decisions based only
on local state.
• Persistent Connection Consistency (PCC): Can the
load-balancer route all packets from the same connection to
the same back-end server in the presence of server arrivals
and failures?
• Expected Load: What is the load balancer load in terms
of the packets it has to process for each connection?
• Latency Overhead: How much overhead does the load
balancer add?
• Updates: How quickly does the load balancer take into
account scale-up (server-arrival) and scale-down (server-
removal) events?

Layer 4 Load Balancing: L4 load balancers operate at the
transport layer (TCP/UDP) of the networking stack and re-
main agnostic to the upper application layers. All public

cloud providers offer some form of L4 load balancing, ex-
amples include Microsoft’s Azure Load Balancer [8], which
was used for the experiment in Figure 2, and Amazon’s AWS
Network Load Balancer [4]

Figure 3a describes the communication between the client,
load balancer, and back-end servers for an L4 load balancer.
The load balancer listens to a virtual IP (VIP) and the client
uses this IP to talk to the service. The service is run on
back-end servers that listen to some direct IP (DIP). The
load balancer assigns each connection to a particular back-
end server and performs address translation. It modifies the
destination IP (to the DIP) for packets sent by the client and
the source IP (to the VIP) for packets sent by the server. This
requires all packets to go through the load balancer adding
a latency overhead of 1 RTT to the end-to-end client-server
communication and reducing the I/O scalability of the load
balancer.
An optimization to the above approach is Direct Server

Return (DSR). In this scheme, packets originating at the
server can be sent directly to the client without being routed
through the load balancer. Servers are aware that they are
being load balanced and modify the source IP of outgoing
packets to the VIP using address rewriting mechanisms such
as tc [64]. DSR reduces the load balancer’s load since it now
only processes client packets and reduces the latency over-
head to 0.5 RTT. Figure 3b illustrates an L4 load balancer
with DSR enabled.

There has been significant research [3, 9, 16, 24, 35, 42, 43,
47, 47–49] on L4 load balancers. All these approaches can be
split into two main categories depending on whether or not
they store per-connection state.

Stateless load balancers [3, 47] typically depend on some
form of consistent hashing [34] and daisy chaining to ensure
that packets with the same 5-tuple will always be forwarded
to the same DIP. Relying on hashing to distribute load en-
ables them to eschew per-connection state leading to better
performance and scalability. However, this approach has two
main caveats. First, load balancing policies are limited to
hashing, namely random load balancing; this leads to load
imbalances especially when connections are skewed. Sec-
ond, despite the use of daisy chaining there remain corner
cases during server arrival and removal that lead to PCC
violations [9].

Stateful load balancers maintain per connection state to
correctly route each packet they receive from the client. Fur-
ther, such load balancers can also maintain state about each
back-end server, in order to support more elaborate load
balancing policies such as Join-Shortest-Queue or Power of
two [44]. Such policies cannot be implemented on a stateless
load balancer. While per-connection state eliminates PCC
violations, the state lookups can become a bottleneck when
the number of active connections is large.
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Figure 3: Commonly used load balancing schemes for cloud services based on VMs or containers.

Method\Property Policy PCC violations Expected load Latency overhead Updates
L4 Central Possible* every packet 1 RTT for every RTT Fast
L4 w/ DSR Central Possible* one way packets 1/2 RTT for every RTT Fast
L7 Central None every packet 1 RTT for every RTT Fast

DNS Central None 1 RPC every
few connections

up to 1RTT
per connection Slow

Local Agent Distributed None every packet none Slow

CRAB Central None SYN packets 1/2 RTT for every
connection establishment Fast

* In stateless L4 load balancers
Table 1: Feature comparison between different deployed load balancing schemes and CRAB.

L7 Load Balancing: L7 load balancers or reverse-proxies
operate at the application layer. These load balancers termi-
nate client connections and open new connections to the
back-end servers. Figure 3a could also describe a L7 load bal-
ancing scheme since all the received and transmitted packets
have to go through the load balancer. However, for L7 load
balancing arrows (1),(4) and (2),(3) would belong to different
TCP connections. Popular open-source L7 load balancers
include NGINX [46] and HAProxy [27]. Cloud providers also
offer such services, e.g., Amazon’s AWS ALB [4].
L7 load balancers are typically centralized. Terminating

client connections and establishing new ones with back-ends
servers, enables them to avoid PCC violations. Further, op-
erating at the application layer allows such load balancers
to understand L7 protocols, e.g., HTTP; this enables them to
perform fine-grained request-level load balancing as opposed
to the more coarse-grained connection level load balancing.
However, this results in them depending on complicated soft-
ware that typically run in userspace. This has the correspond-
ing performance implications, in particular a considerable
increase in the latency overhead (we illustrate this in §5.2).

DNS Load Balancing: Another form of load balancing used
both in the public internet as well as by container orchestra-
tors such as Docker Swarm [53], and Mesos [30], depends
on DNS. DNS load balancing relies on the fact that most
clients use the first IP address they receive for a domain after

DNS resolution. Typically, the DNS server sends the list of IP
addresses in a different order each time it responds to a new
client, using the round-robin method. As a result, different
clients direct their requests to different servers, effectively
distributing the load across the server group. Figure 3c de-
scribes the client, server, and DNS server interactions for a
DNS load balancing scheme. Steps (a)-(b) can be performed
once for several connections (1)-(2).

DNS load balancing, while centralized, is extremely coarse
grained, since it only balances the load at a per-client granu-
larity. Further, to avoid the repeated overhead of DNS reso-
lution and reduce the load on the DNS server, clients cache
DNS entries; once an entry is in the cache, clients and servers
talk directly. Despite its performance benefits, caching can
cause severe load imbalance issues. Since clients use the same
target IP until the cached entry expires, the system cannot
mitigate load imbalances during this period. Also, removing
servers from the back-end pool becomes challenging and
slow, since administrators have to wait until every possible
TTL for the associated entries has expired. DNS load balanc-
ing though does not suffer from PCC violations since clients
and servers communicate directly.

Local Load-balancing Agent: This load balancing scheme
is used in Kubernetes [39]. In a Kubernetes cluster, every
node that runs networked containers also runs a local agent
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responsible for the network configuration. This agent main-
tains a consistent view of the network by subscribing to
state changes in the configuration service (etcd [18]). Each
service that runs multiple containers and requires load bal-
ancing is associated with a specific ClusterIP. The local agent
keeps track of the container IPs that run the specific service.
Every time a client uses the ClusterIP, the local agent picks
one of the target containers and performs address transla-
tion for each transmitted and received packet. Thus, while
the client believes it is communicating with the ClusterIP,
it is actually communicating with a container running the
service. Figure 3d describes the above load balancing scheme
and the interactions between the client, the server and the
local agent.

The main benefit of a local agent is the ease of deployment,
since it is integrated into the orchestrator rather than an ex-
ternal service. Placement and scaling decisions automatically
update the load balancing decisions performed by this local
agent, through pub-sub [19]. However, this approach suffers
from three main problems: (1) load balancing decisions are
performed in a distributed manner on every server, masking
the benefits of smart placement, (2) packet rewriting is on
the critical path for every packet sent and received, leading
to an increase latency and CPU utilization (3) changes to the
pool of target containers take longer to propagate through
the use of pub-sub since all machines in the cluster have to
receive the update; unlike the case in systems where the load
balancing service is standalone and clients and servers are
agnostic to it.
Table 1 summarises the above comparison and position

CRAB in the design space among the same axis.

2.2 Load Balancing Policies
So far, we have categorized the different load balancing poli-
cies used in the above load balancing schemes based on
two criteria: (1) whether they are implemented centrally
(e.g., L4 load balancers) or in a distributed manner (e.g., load
balancing based on a local agent); (2) whether the policy
is random (e.g., hashing in stateless L4 load balancers), or
richer (e.g., round-robin on stateful L4 load balancers). The
performance implications of these policies on application
tail latency, though, remains unclear.

To answer the above question, we leverage queuing-theory
models and run a discrete event simulation for load balanc-
ing policies from each category. Our setup models 16 clients
that communicate with 16 servers. Among stateful policies
we choose the simplest non-random policy, which is Round-
Robin. We simulate both the centralized and distributed ver-
sions of this policy. The centralized policy can be thought of
as being implemented by a stateful L4 load balancer and the
distributed policy as being implemented by Kubernetes-like
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Figure 4: Discrete event simulations of 16 clients send-
ing requests to 16 servers randomly (RAND) or based
on a Round-Robin policy in a centralized (C-RR) or
distributed manner (D-RR).

local agents. Since stateless load balancing is equivalent to a
random assignment of connections to servers, we simulate
both centralized and distributed versions of the random pol-
icy. We exclude the case of the DNS-based load balancing due
to the big impact of TTL both on the required DNS server
resources, and the end-to-end latency.

Figure 4 summarizes the simulation results for each policy
for a fixed service time distribution and a Poisson inter-
arrival. We observed that the centralized and distributed
versions of the random policy displayed identical perfor-
mance, hence we show them as one. In terms of application
tail-latency, the random load balancing has the worst per-
formance. Further, there is a difference between the D-RR
(Distributed Round-Robin) policy and the C-RR (Centralized
Round-Robin) policies. Due to the randomness of the Poisson
inter-arrival, performing Round-Robin on each node leads to
worse tail latency, since centralized Round-Robin manages
to always pick the least loaded server in this fixed service
time experiment. We draw two conclusions from the above
results: (1) Decentralized policies are worse at distributing
the load than their centralized counterparts leading to worse
tail latencies. (2) Rich policies can significantly outperform
random load balancing.
However, the choice of load balancing policy is not in-

dependent of the load balancer design. For instance, richer
policies require stateful implementations that do not scale
well, while scalable stateless designs cannot support poli-
cies beyond random. This reveals a design trade-off between
the scalability of stateless designs and richer load balancing
policies of stateful designs.
Our goal is to design a load balancer that combines the

best aspects of each design discussed so far, namely: (1) the
performance characteristics of DNS-based load balancing
(expected load independent of flow size and close to direct
communication latencies) (2) the load balancing capabilities
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of centralized, stateful L4 load balancers and (3) the scalabil-
ity, flexibility, and PCC violation elimination of stateless L4
load balancers.

3 DESIGN
CRAB is designed to satisfy the following requirements: (1)
The load balancer must be able to implement centralized,
stateful policies that offer better tail-latency, easier manage-
ment, and faster updates. (2) The load balancer must not
become an I/O and scalability bottleneck. (3) The load bal-
ancer must incur the minimal possible latency overhead by
eliminating unnecessary network hops. (4) The load balancer
must be backwards compatible with existing connection-
based transport protocols (specifically TCP). (5) The load
balancer must eliminate PCC violations.
The core insight behind CRAB is simple: Implementing

a centralized, stateful load balancing policy at a connection
granularity requires the load balancer’s involvement only dur-
ing connection setup, following which the client and server
can communicate directly. Said differently, the load balancer
need only map a connection to a back-end server when the
connection is being setup, after which it only performs ad-
dress translations, thus it can be taken off the data path. This
eliminates all network hops through the load balancer in the
data exchange phase, minimizing the latency overhead and
avoiding scenarios where the load balancer becomes the I/O
bottleneck, while it completely eliminates the risk of PCC
violations. Note, this insight is specific to scenarios in which
clients and servers can directly talk to each other and the
load balancer is not required to conceal internal infrastruc-
ture. This assumption holds for internal load balancers in
the public cloud (which is our target deployment) but does
not generally hold for load balancers in the public internet.

CRAB realizes the above insight for TCP, by extending the
traditional 3-way handshake. Figure 5a illustrates this hand-
shake between a client and a server with an L4 DSR-enabled
load balancer in the middle for a vanilla TCP implementa-
tion. This handshake requires 5 packets to be exchanged.
The client first sends a TCP SYN packet to the load balancer’s
VIP 1 . The load balancer assigns this connection to a par-
ticular back-end server and forwards the SYN packet to its
DIP 2 . Since DSR is enabled, the server replies directly to
the client with a SYN-ACK packet having VIP as the source IP
3 . Finally, the client sends the load balancer an ACK packet
4 , which the load balancer forwards to the back-end server
5 to finish the connection establishment.
To remove the load balancer from the data path, CRAB

leverages what we call Connection Redirection (CR). As the
name suggests, CR enables redirecting the connection being
established to a target IP address that is different from the

one initially contacted by the client. To enable CR, we added a
new TCP option called Connection Redirect. While clients
would ordinarily discard SYN-ACK packets sent from an IP
address they did not send a SYN packet to, they now condi-
tionally accept such packets as long as they have the new
TCP option. The Connection Redirect option includes a 4-
byte field that carries the initial destination IP that the client
sent the SYN packet to. This enables the client to validate
that the received SYN-ACK is indeed a part of the handshake
it initiated and also to find the associated struct sock.
When a client receives a SYN-ACK with a valid Connection
Redirect option, it changes its internal connection-related
data structures and updates themwith the new destination IP.
Then, it sends the ACK to the new destination to finalize the
connection establishment. Once this is done, the original des-
tination IP is ignored and the two end-points communicate
directly.
Figure 5b describes the TCP handshake, the associated

packets, their IP and TCP headers, and other key fields in the
case of connection redirection. As in the vanilla TCP case,
the client first sends a TCP SYN packet to the load balancer
1 . This TCP SYN now also indicates whether or not the
client supports CR; in this case, we assume it does. The load
balancer assigns this connection to a particular back-end
server and forwards the SYN packet to its DIP 2 . In addition,
it uses the Connection Redirect option to include its VIP
in the packet and inform the back-end server that this is a
redirected connection. The server then sends the SYN-ACK
packet directly to the client, with the source IP set to its own,
and also echoes the Connection Redirect option with load
balancer’s VIP 3 . Finally, the client processes the new TCP
option and redirects the connection, resulting in it sending
the ACK packet directly to the back-end server and bypassing
the load balancer 4 .
Figure 6 illustrates the complete CRAB load balancing

architecture. Steps a − c correspond to the first 3 packets
from Figure 5b. All further packets are directly exchanged
between the client and the server, completely bypassing the
load balancer. The only packets that the CRAB load balancer
needs to handle are the TCP SYN packets. Once it directs
the packet to a particular back-end server (load-balances
the connection), it is eliminated from the data path. A direct
consequence of this is that CRAB significantly reduces the
resources necessary for load balancing. Since a CRAB load
balancer handles only new connections, it can be provisioned
according to the rate of new connection establishment, as
opposed to the receive and transmit throughput of those
connections.
In cases where the client’s SYN packet does not indicate

support for connection redirection, the load balancer can
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Figure 5: A load balanced TCP handshake with and without connection redirection. Blue boxes correspond to IP
headers, red boxes correspond to TCP headers.
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Figure 6: Load Balancing over CRAB using the
Connection Redirect TCP option. Dashed lines in-
dicate connection establishment. Solid lines indicate
data exchange.

fall back to stateless hash-based load balancing, thus remain-
ing compatible with non-CRAB-compliant clients. The load
balancer check if the back-end servers are CRAB-compliant
through the health probes already sent to make sure servers
are up and running.

So, CRAB achieves its design goals as follows: (1) All SYN
packets continue to be routed via the load balancer, allowing
it to implement the centralized policy of its choice without
the limitations of stateless load balancers. (2) Dealing with
only SYN packets and not the actual connection payload, en-
sures that the load balancer is no longer the I/O bottleneck.
(3) Removing the load balancer from the data path elimi-
nates all intermediate network hops to it once connection
establishment is complete. (4) CRAB is backwards compati-
ble with existing network stacks and falls back to stateless
load balancing if the Connection Redirect TCP option is
not supported. (5) After connection establishment clients
talk directly with servers, thus completely eliminating PCC
violations.

4 IMPLEMENTATION
CRAB depends on a custom load balancing middlebox and re-
quires changes to the client and the server endpoints. These
three components can be implemented using different tech-
nologies based on deployment requirements, yet can inter-
operate independent of the implementation. In this section,
we describe the implementations in our current prototype.
We discuss alternatives for both implementation and place-
ment of this functionality in §6.
The deployment target for CRAB is a public cloud IaaS

provider such as Amazon AWS, Microsoft Azure, or Google
Compute Platform. We assume that the provider fully con-
trols the physical infrastructure, but can also control the VM
images that cloud tenants use. Unlike other deployment sce-
narios in whichmodifying the client endpoints is not feasible,
e.g., the internet, clients running on cloud infrastructure can
easily integrate new features by running VM images offered
by the cloud provider. This approach of specially modified
could VM images is not new and already used extensively,
e.g., in Azure accelerated networking [7].

4.1 Load Balancing Middlebox
We implement the CRAB middlebox in four different ways
keeping in mind the infrastructure IaaS providers use today
and the fact that they might need to run several load balancer
instances per tenant. We built CRAB middleboxes that rely
on, P4 [11], DPDK [14], eBPF [59], and Netfilter modules [62]
respectively.
We implemented a CRAB load balancer in ∼300 lines of

P414 that process TCP SYN packets in the Tofino [10] data-
plane. Our DPDK-based CRAB implementation depends on a
custom, simple networking stack and the load balancer imple-
mentation consists of ∼100 lines of C code. Our eBPF-based
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load balancer leverages XDP [68] and runs natively in the
driver context, thus avoiding an extra softIRQ. It processes
the incoming packets and sends them out again through the
same interface without letting them enter the Linux kernel,
while also being able to easily communicate with the user-
space through the use of eBPF maps that define the set of
DIPs. The eBPF-based implementation consists of ∼250 lines
of C code. Finally, our Netfilter implementation runs in the
context of a NF_INET_PRE_ROUTING hook. It is loaded as a
kernel module and can communicate with userspace through
a character driver to configure the target DIPs and the load
balancing policy. The Netfilter implementation is ∼200 lines
of C code.
Our prototype implementations support two push-based

load balancing policies namely random selection and Round-
Robin. All implementations currently assume that clients
and servers are CRAB compliant; they handle only TCP SYN
packets and drop all other packets.

4.2 Connection Redirection

Server-side: To enable Connection Redirection, the server
must include the Connection Redirect option with the
load balancer’s VIP in the header of the SYN-ACK packet it
sends to the client. This can be implemented either inside the
kernel TCP stack or as part of a header rewriting mechanism
before the packet is sent. We provide two implementations
for this functionality that display similar performance char-
acteristics. The first is based on a patch to the Linux kernel.
It parses the TCP options in the received SYN packet and
if the Connection Redirect option is set, echoes it in the
SYN-ACK packet. The second implementation leverages Net-
filter modules and hooks onto the NF_INET_LOCAL_OUT hook.
This Netfilter hook modifies the outgoing SYN-ACK packets
that match a certain source IP and port number and adds
the Connection Redirect option with a predefined load
balancer VIP. The Netfilter implementation totals ∼200 lines
of C. Given that the server-side implementation of CRAB
does not require any kernel data structure modifications it
can also be implemented in an eBPF program.

Client-side: The client-side of CRAB is the most intrusive
since clients need to modify kernel data structures associated
with the connection being redirected. We provide two solu-
tions, one based on patching the kernel and another based
on Netfilter modules; both display similar performance. Both
implementations use the IP address found in the Connection
Redirect option to locate the original connection and over-
write the connection’s destination IP with the source IP of
the received SYN-ACK. The Netfilter module totals ∼150 lines
of C and uses a NF_INET_PRE_ROUTING hook to modify the
socket structure before the SYN-ACK reaches the TCP stack

which otherwise would drop the packet due to the source IP
being unknown. The kernel patch supporting CRAB is based
on Linux 4.19.114 and adds ∼200 lines of code.

5 EVALUATION
Our evaluation answers the following questions: (1) How do
the different implementations of the CRAB load balancer per-
form? (2) How does the latency overhead of CRAB compare
against existing baselines? (3) How does system throughput
scale with CRAB? (4) Can CRAB implement complex sched-
uling policies that improve the end-to-end application tail
latency?

We evaluated CRAB on our infrastructure, rather than the
public cloud due to limitations imposed by IaaS providers
(e.g., the inability to spoof IPs) which are necessary for the
CRAB load balancer. Doing so enables us to be in full control
and understand the infrastructure to better reason about the
observed performance.

Our experimental setup consists of 10 machines connected
by a Quanta/Cumulus 48x10GbE switch with a Broadcom
Trident+ ASIC. The machines are a mix of Xeon E5-2637 @
3.5 GHz with 8 cores (16 hyper-threads), and Xeon E5-2650
@ 2.6 GHz with 16 cores (32 hyper-threads). All machines
are configured with Intel x520 10GbE NICs (82599EB chipset).
The machines configured as clients or servers run either our
CRAB-enabled modified Linux kernel or the CRAB client
and server Netfilter modules since we did not observe any
performance difference between the two implementations.
For the experiments on P4 we use a Barefoot Tofino ASIC
that runs within an Edgecore Wedge100BF-32X connected
to the Quanta switch via a 40Gbps link.

5.1 CRAB Load Balancer Implementations
In this section, we evaluate the different CRAB load balancer
implementations based on P4, DPDK, eBPF, and Netfilter
modules respectively, in terms of their latency overhead and
throughput they can sustain. The goal is not to compare the
performance of the four different technologies (P4 vs DPDK
vs eBPF vs Netfilter) but rather to provide information on
the raw performance each implementation can achieve.
To evaluate latency, we run the same echo benchmarks

as in Figure 2 with an 8-byte message size. In the CRR
(Connection-Request-Response) benchmark, the client opens
a new connection, sends a request, and waits for the response.
On receiving the response, it closes the connection. We mea-
sure the end-to-end latency from connection establishment
until the reply. In the RR (Request-Response) benchmark
the client uses a pre-established connection to send requests
and get back replies. We measure the end-to-end latency
from when the client sends the request until the reply. Both
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Figure 7: Unloaded tail latency latency measured for
the CRR and RR benchmarks for each CRAB load bal-
ancer implementation.

experiments run in a closed loop with one client and one
server thread, one connection, and one request at a time.

Figure 7 plots the 99-th percentile latency for the CRR and
RR benchmarks for each implementation. As expected, we
only observe a difference in the CRR experiment since the
RR experiment uses a pre-established connection and the
load balancer is off the data path. In the CRR experiment,
the P4-based implementation has the best performance since
it depends on a hardware dataplane. The DPDK-based im-
plementation has the best performance among the software
implementations since the load balancer works in a polling
mode. The eBPF load balancer operates in native mode in
the driver context, thus it performs better than the Netfilter
module that runs in the softIRQ context and uses the kernel
networking stack.
To evaluate throughput, we need to identify how many

SYN packets can each implementation sustain since this is
the only traffic that the CRAB load balancer deals with. Un-
fortunately, we do not possess the resources to run a full
setup with TCP clients and servers such that the load bal-
ancer is the bottleneck. Instead, we created a DPDK-based
client program that bombards the load balancer with SYN
packets to stress test the different CRAB implementations.
We configured the load balancers to redirect those SYN pack-
ets back to the same IP as if the client IP is one of the server
DIPs. This enables the client to measure the throughput in
terms of SYN packets per second, that each load balancer
implementation can sustain.

We are only interested in the achieved throughput of the
software-based implementations, since Tofino can achieve
line-rate processing. Thus, We configure the three software
load balancers to use only one core for packet processing.
For the DPDK implementation, we run a single thread, while
for the kernel-based implementations we redirected all NIC
interrupts to one core, so packet processing would only take
place on that core.
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Figure 8: Maximum throughput (new connections per
second) achieved by each software-based CRAB load
balancer implementation.

Figure 8 summarizes the results and plots the maximum
achieved throughput in terms of SYN packets per second.
CRAB-DPDK saturates a 10G NIC (∼14M SYN packets per
second)with a single core. CRAB-EBPF can serve 6.8M SYN/sec,
while CRAB-Netfilter can serve 1.5M SYN/sec. As for latency,
the performance difference is explained by the different in-
terrupt contexts.
Given the performance results and the ease of deploy-

ment that software-based solutions offer, we use only the
DPDK-based implementation of CRAB from here onwards
as a more realistic candidate to be deployed in the public
cloud infrastructure.

5.2 Latency Overhead
We now compare the latency overhead imposed by CRAB
against existing load balancer implementations using the
same unloaded latency benchmarks. We use the following
baselines: (1) A direct configurationwhere clients and servers
communicate directly without a load balancer. This repre-
sents the lower bound on latency. (2) NGINX configured as
a TCP reverse proxy. This represents an L7 load balancer
and (3) An implementation of a stateless L4 load balancer
based on the Toeplitz hash [67] which runs on DPDK and is
configured with DSR (LBL4-DSR).
Figure 9 plots the observed 99th percentile unloaded la-

tency over 100000 samples for the direct, LBL4-DSR and
CRAB load balancers. TheNGINX configuration added∼250µs
on top of direct for CRR, and ∼50µs for RR and hence is
not shown in the graph for readability reasons. In the CRR
benchmark, the DPDK implementation of CRAB adds ∼6µs
on top of Direct which corresponds to the half RTT overhead
incurred when the SYN packet is routed through the load
balancer. In comparison, the LBL4-DSR configuration adds
double the overhead (∼12µs) since both the SYN and the
request packet from the client are routed through the load
balancer. In the RR benchmark, CRAB performs the same as
Direct, since the load balancer is off the data path. In con-
trast, the LBL4-DSR load balancer adds 6µs since the request
packet from the client is routed through the load balancer.
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Figure 9: Unloaded tail latency for the CRR and RR
benchmarks for setups with no load balancer (Direct),
a DPDK-based L4 load balancer with DSR (LBL4-DSR),
and the CRAB implementation on DPDK (CRAB-
dpdk).

5.3 Throughput Scaling
Here, we illustrate how CRAB’s design enables the appli-
cations to bypass load balancer bottlenecks and scale their
throughput to the I/O capacity of the back-end servers. As
mentioned in §2, while DSR alleviates these bottlenecks for
applications that are Tx heavy, CRAB seeks to eliminate
this bottleneck for a broader range of applications. In this
experiment, we target internal cloud services that have a
symmetric throughput profile (e.g., storage services, authen-
tication/prediction microservices etc.).
To illustrate how CRAB enables throughput scaling, we

run the same closed-loop echo benchmark in CRR and RR
mode with different message sizes, but measure the maxi-
mum goodput (bytes of application payload per unit time)
as opposed to the unloaded latency. We use three client and
three server machines, and one machine serving as a load bal-
ancer, each machine configured with a 10G NIC. We compare
CRAB against LBL4-DSR. Both load balancers implement the
random load balancing policy.

Figure 10 illustrates the results. For both the RR and CRR
workloads, the setup with L4LB-DSR is only able to achieve
a maximum goodput of 10G since it is bottlenecked by the
single machine that runs the load balancer. On the other
hand, we see that CRAB can scale throughput beyond the
capacity of the load balancer. In the RR experiment, it can
achieve the goodput equal to the I/O capacity of the 3 back-
end servers (3x10 = 30G) at a payload size of 4096B. In the
CRR experiment CRAB and LBL4-DSR perform similarly
until a payload size of 8192B; this is due to the experiment
being bottlenecked by the cost of new connection establish-
ments. Past 8192B however, LBL4-DSR hits the 10G limit,
while CRAB continues to scale.
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Figure 10: Comparing Max goodput achieved in the
CRR (dashed) and RR (solid) benchmarks for CRAB
and a DPDK based L4 LB with DSR. I/O capacity of
both LBs = 10G. I/O capacity of servers = 30G.

5.4 Load Balancing Policies
So far, we’ve shown how CRAB, by redirecting connections
and bypassing the load balancer incurs a lower latency over-
head and enables better throughput scaling.We now evaluate
whether CRAB supports elaborate load balancing policies
that can significantly improve application tail latency, while
still not maintaining per-connection state. Note that CRAB
does not propose any new scheduling policies, but must sup-
port policies beyond stateless (random) load balancing. For
now, we only evaluate push-based policies in which there
is no explicit communication between the servers and the
load balancer that could help the load balancing decisions.
We leave more complicated policies to future work.

To run this experiment on our infrastructure but with a
setup that resembles the public cloud, we use 3 servers and
configure 16 virtual functions on each server for a total of 48
independent endpoints. We configure each VF with a unique
DIP and equally rate limit the VFs so that they take a fair
share of the 10G I/O bandwidth of the server. We evaluate
the load balancing capabilities of CRAB for two classes of
applications — CPU-intensive and I/O-intensive. The CPU
bottlenecked application is a synthetic service time server
with a fixed service time of 1ms. For the I/O-bottlenecked
application, we use NGINX that serves a static file of 8kB over
HTTP. For both applications, each request is sent over a new
TCP connection. We use Lancet [37] as the load generator.
Note, that in both experiments the load balancer is not the
bottleneck.
We measure the tail latency as a function of application

load for three load balancing policies: (1) Random load bal-
ancing with DSR — this represents policies supported by
stateless L4 load balancers today (2) A CRAB implementation
of random load balancing and (3) A CRAB implementation
of Round-Robin load balancing — this represents richer load
balancing policies that can only be implemented on stateful
load balancers. CRAB, though, can implement Round-Robin
without keeping per-connection state at the load balancer.
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Figure 11: Load Balancing 48 single-core servers run-
ning a synthetic service time application with S̄ = 1ms

The goal of the experiment is to validate if CRAB can realize
the benefits of the elaborate policies as shown in §2.2.
Figures 11, 12 plot the tail latency vs throughput curves

for the CPU bound and I/O bound applications respectively.
We observe that for both application classes, despite all three
policies achieving the same throughput, CRAB Round-Robin
achieves significantly lower tail-latency. For application pro-
files with low service time dispersion, the Round-Robin load
balancing policy picks the least loaded server and forward
requests to it without requiring explicit communication be-
tween the load balancer and the server. Thus, CRAB in addi-
tion to eliminating I/O bottlenecks and reducing communi-
cation latencies, supports elaborate load balancing policies,
truly achieving the best of all worlds.

6 DISCUSSION

Port redirection:: In our existing CRAB implementation
we only consider connection redirections based on the target
IP assuming that the load balanced service always runs on
the same port in the back-end servers. The mechanism can
be easily extended to modify the target port, too, in case
this is desirable by including both the IP and port in the
Redirection Option.

Mechanism placement:We implemented connection redi-
rection as part of the Linux kernel assuming the following
deployment models: (1) In the case the kernel patch goes
upstream, newer kernel version will support it. (2) If not,
cloud providers can offer VM images with the modified ker-
nel which cloud tenants can leverage to benefit from CRAB.
However, these assumptions are not fundamental to CRAB.
We now discuss how CRAB’s advantages can be retained
with alternative placements of connection redirection that
the client and server kernels remain agnostic to.
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Figure 12: Load Balancing 48 NGINX servers serving
an 8 kB static file.

Cloud providers implement engines either in software [13,
20, 41], or in hardware [21] that accelerate their virtual net-
working infrastructure. These engines apply address transla-
tion rules and encapsulate and decapsulate packets. Connec-
tion redirection can be supported by those engines, instead
of the guest kernels. On the client side receiving a SYN-ACK
with the Connection Redirect option will create two new
rules that will perform Source Network Address Translation
(SNAT) for the received packets and Destination Network
Address Translation (DNAT) for transmitted packets respec-
tively. The engine will overwrite the DIP with the VIP in
the received option for incoming packets, and vice-versa
for the transmitted packets. The server-side implementation
will create a short-lived rule on receiving a SYN packet with
the redirection option to echo the option in the outgoing
SYN-ACK. The downside of such an implementation is that it
involves packet modifications on the critical path that can
incur performance overheads in a software-based stack. De-
spite the similarities with the agent-based load balancing in
§2, supporting CRAB on the host infrastructure still enables
guests to benefit from the centralized load balancing policies
and easy and fast updates to the server pool.

Alternative Transports:While we focus only on TCP, here,
we discuss how the core ideas behind CRAB apply to other
connection-oriented transport protocols, in particular QUIC.
QUIC [40] is a low-latency transport protocol designed orig-
inally for HTTPS traffic.

While QUIC runs over UDP, it still retains the notion of a
connection that is established between a client and a server
after a handshake. QUIC also allows a 0-RTT connection es-
tablishment for endpoints that have already communicated
in the past. After the initial handshake, the connection is asso-
ciated with a ConnectionID that defines the connection. Load
balancers use this ConnectionID to forward packets from
the same connection to the correct back-send server [40].
ConnectionIDs also enable seamless connectivity during end-
point migrations (address changes).
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We believe CRAB naturally extends to QUIC and can be
implemented in two different ways that expose a trade-off
between the intrusiveness of the implementation and its
performance. First, QUIC can be extended in the same way
we extended TCP to support connection redirection during
setup, thus benefitting by the simplicity of the proposed
CRABmechanism. QUIC, though, also supports a connection
migration functionality that can be used to support CRAB,
requiring a more complex middlebox, though. In this case,
the 1-RTT handshake has to be performed over the load
balancer, since no migration is allowed during connection
establishment. Then the server initiates a migration to its DIP
instead of the VIP by leveraging the ConnectionID. Following
0-RTT connection establishments can use the DIP directly,
thus bypassing the load balancer.

Caveats: Unlike L7 load balancing and DNS-based load bal-
ancing that can be deployed by both cloud providers and
cloud tenants, L4 load balancing and CRAB require IP spoof-
ing, namely the ability to send an IP packet with a source IP
that is different from the local IP. CRAB relies on the load
balancer sending packets to the back-end servers with the
client IP as source IP. However, IP spoofing is not available
for cloud tenants. Thus, CRAB can only be deployed by cloud
providers, substituting or complementing their existing L4
load balancing offerings.
CRAB and our proposed connection redirect feature can

affect existing mechanisms that perform connection tracking.
Such mechanisms can be either implemented in software,
such as conntrack [57] and Receive Flow Steering (RFS) [66],
or in hardware, such as Intel’s Application Targeting Routing
(ATR) [60]. The goal of such mechanisms is either perfor-
mance optimization (e.g., interrupt steering for locality) or
monitoring (e.g., conntrack-tools). In our current imple-
mentation, we do not handle such potential violations. In
our unloaded latency experiments, we steered all NIC inter-
rupts to the core running the client application while in our
throughput experiments all cores were constantly busy. Thus,
we did not observe any performance degradation due to hin-
dering of connection tracking mechanisms and specifically
ATR.

Other load balancer functionality: Apart from load bal-
ancing load balancers today perform other functionalities,
such as traffic analysis and firewalling given that all client
traffic goes through them. Some of their load balancing de-
cisions might, also, depend on this traffic analysis. CRAB,
though, bypasses the load balancer for the datapath, thus it
restricts the load balancer visibility on the client traffic. We
suggest that any additional to load balancing functionality,
such as traffic analysis, should be performed more efficiently
in a distributed manner on each machine as opposed to a

centralized middlebox whose initial purpose is load balanc-
ing. Regarding the load balancing decisions based on traffic
analysis, we suggest there is an additional signaling mech-
anism between the end-hosts and the CRAB load balancer
through which servers can notify the load balancer for their
availability. The granularity of this mechanism can be ei-
ther very fine-grained, e.g., for every finished connection, or
more coarse-grained e.g., periodically. The existence of such
an external control mechanism will enable the deployment
of more elaborate load balancing schemes, e.g., CPU-aware
ones. In a heterogeneous environment where each server
has a different CPU capacity, or in cases where competing
workloads affect the available CPU capacity, such a signaling
scheme would enable the load balancer to direct the right
amount of traffic to each server to avoid overload and SLO
violations.

CRAB for Kubernetes NodePort: We only showed the
benefits of using connection redirection in load balancing
with CRAB when using the central CRAB middlebox. How-
ever, connection redirection can have other use cases in a
cloud setup, too. One such use-case arises from the Kuber-
netes ecosystem and the use of NodePort [61].

The NodePort configuration exposes a service running on
a Kubernetes cluster on every cluster node independent of
whether pods are running this service on the specific node.
This way a service can be placed behind an L4 load balancer
having all cluster nodes in its server pool. In cases when a
node receives traffic for a service that does not run locally, it
forwards this traffic to a node that does using kube-proxy. A
downside of this approach is that all traffic flows through this
intermediate hop, deteriorating the client’s perceived latency.
To deal with the increased latency, administrators can con-
figure Kubernetes with externalTrafficPolicy=Local, so
that new connections get rejected if there are no local ser-
vice instances. This, however, is only a remedy rather than a
solution.

Connection redirect can reduce the latency overhead in the
above scenario as follows: The initial server that is assigned
by the load balancer but does not run the service can add
the redirect TCP option before forwarding the SYN packet
to the node running the service. That node will then echo
back the option as usual, but instead of the client, this option
will be intercepted by the stateful load balancer which will
then update the target for future packets in this specific
connection.

7 RELATEDWORK
Connection migration is a similar but different feature to
connection redirection that CRAB proposes. The purpose of
connection migration implemented in QUIC [40] and pro-
posed for TCP [52] is to serve IP mobility and fault tolerance.
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A connection migration can happen at any point in time
throughout the connection’s lifetime, thus requiring more
complicated mechanisms to be implemented. Connection
redirection introduced in CRAB can only happen during
connection establishment, which enables us to significantly
simplify the required mechanism and eliminate its associ-
ated overheads, while its purpose is strictly targeting load
balancing and connection placement. Although connection
migration mechanisms could be abused to work in load bal-
ancing scenarios, they would require a much more compli-
cated middlebox logic.

Load balancing is performed at different layers of the net-
working stack. Network load balancing is below L4 load bal-
ancers and orthogonal to our work. Hash-based approaches
such as ECMP [51, 54], or more complex approaches such
as Conga [1] and alternatives [25, 29, 36, 69, 72] make sure
that the multiple paths inside 3-tier datacenter clos topology
are equally loaded, thus reducing queuing at the datacenter
switches.
CRAB can be thought of as a lightweight L4 load bal-

ancer that bypasses the typical L4 load balancing limitations.
There are numerous load balancer implementations in soft-
ware [3, 16, 35, 47, 48], and hardware [9, 24, 42, 43, 49] with
stateful or stateless designs. Stateful designs suffer from scal-
ability limits, while stateless designs suffer from suboptimal
load balancing policies. To overcome the space limitations
in stateful load balancers Kablan et al. [32] suggested using
external stores for the load balancing state. CRAB achieves
the best of both worlds since it can implement complex load
balancing policies and avoid PCC violations while remaining
stateless.
The works most closely related to ours, though, are the

following. Duchene et al. [15] target a specific to Multi-path
TCP (MPTCP) [22] problem and ensure that the different TCP
connections within a single MPTCP connection are routed
to the same server, using a similar mechanism to connection
redirect, in which the back-end server advertises its IP to
the client during connection setup. R2P2 [38] similarly to
CRAB enables load balancer bypass both on the transmit
and receive path from the client perspective, but does so by
employing a novel transport layer that exposes individual
RPCs. Cheetah [9] exposes an identifier to the clients that is
used by the load balancer for forwarding, thus achieving poli-
cies equivalent to a stateful load balancer without keeping
state at the load balancer. However, cheetah’s load balancer
is always on the critical path, unlike CRAB. Finally, QUIC’s
connection migration feature [65] serves as a subset of the
proposed connection redirect option.

The above solutions can only be deployed by cloud providers
and offered as services to the cloud tenants. Tenants that
want to have more control over their infrastructure and how
load balancing is performed can deploy L7 or DNS-based load

balancing. Examples of open-source software that provides
such services is NGINX [46], varnish [70], haproxy [27], en-
voy [17] etc. for L7 and bind [56] and dnsmasq [58] for DNS.
L7 load balancers can implement more elaborate load balanc-
ing policies than CRAB since they can also do request-level
load balancing but incur more significant costs since they
run in userspace. Prism [28] and Connection hand-off [31]
improve L7 load balancing by temporarily bypassing the load
balancer for each request, unlike CRAB that completely by-
passes the load balancer for the entire connection. Thus, such
approaches still require complicated logic at the middlebox.
DNS-based load balancing can display similar performance to
CRAB but suffers from the problems associated with caching.

Cloud providers use cluster schedulers such as Borg [71],
Kubernetes [12, 39], Mesos [30], Docker Swarm [53] to provi-
sion virtual resources for container or VM workloads aiming
to maximize utilization without violating customer SLOs.
CRAB can be used as part of the above solutions helping
their elasticity. CRAB dramatically reduces the resources
necessary for load balancing, thus leaving more available
resources for the above schedulers to run client workloads
on.

8 CONCLUSION
CRAB is a novel design for internal load balancers in the
public cloud. It depends on a new TCP option that enables
connection redirection; thus, the load balancer participates
only in the connection establishment. Unlike traditional L4
load balancers, CRAB does not impact the latency or band-
width of established connections. CRAB can support the
same rich load balancing policies as traditional load bal-
ancers, but without keeping per connection state within
the load balancer. CRAB is backward compatible with TCP,
and easily deployable on the public cloud with minor kernel
modifications.
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